PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 14 | nr 2 | 124--133
Tytuł artykułu

Developing a Decision Support System for Supply Chain Component

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increased competition has led businesses to compete with each other in streamlining supply chain processes, especially in the manufacturing sector. Supply Chain Management (SCM) determines the success of industrial business processes because it regulates product flow regarding integration, performance, and information. However, several problems have emerged in the supply chain process, such as a lack of coordination in the production queue, difficulties in forecasting trending products, and suboptimal production capacity. To address these issues, the role of information technology is crucial for implementing a Decision Support System (DSS). This study aims to develop a DSS to improve the supply chain processes. The research method used is Extreme Programming (XP) with a qualitative approach through a questionnaire. The research process involves collecting data, defining boundaries and problems, and designing, coding, and testing the system. As a final step, evaluation is carried out by distributing surveys to obtain valid satisfaction results. This research produces a DSS that has applicability in marketing, accounting, and production processes. The application of DSS in the furniture manufacturing industry can help manage the movement of resources, optimize strategic networks, and assist decision-making in the supply chain process. (original abstract)
Rocznik
Tom
14
Numer
Strony
124--133
Opis fizyczny
Twórcy
  • Universitas Bunda Mulia, Indonesia
  • Sampoerna University, Indonesia
  • Universitas Bunda Mulia, Indonesia
Bibliografia
  • Abushaega M.M., Daehy Y.H., Alghamdi S.Y., Krishnan K.K., Khamaj A. (2021), Design of supply chain network to reduce impacts of damages during shipping, Management and Production Engineering Review, No. 2, Vol. 12, pp. 17-26. doi: 10.24425/mper.2021.137674.
  • Afraz M.F., Bhatti S.H., Ferraris A., Couturier J. (2021), The impact of supply chain innovation on competitive advantage in the construction industry: Evidence from a moderated multimediation model, Technological Forecasting and Social Change, No. 162, pp. 1-12. doi: 10.1016/j.techfore.2020.120370.
  • Andry J.F., Nurprihatin F., Liliana L. (2022a), Supply chain disruptions mitigation plan using six sigma method for sustainable technology infrastructure, Management and Production Engineering Review, No. 4, Vol. 13, pp. 1-10. doi: 10.24425/mper.2022.142397.
  • Andry J.F., Nurprihatin F., Liliana L. (2022b), Supply chain mapping to prepare golden generation 2045 for future technology infrastructure. E3S Web of Conferences, 359, 1-10. doi: 10.1051/e3sconf/202235905004.
  • Ariza H.M., Silva L.F.W., Contreras L.A.L., Tecnologica F., Distrital U., Jose F., Bogotá D.C. (2021), Descriptive analysis of the agile methodology Extreme Programming (XP) for its implementation in software development, International Journal of Engineering Research and Technology, No. 10, Vol. 14, pp. 999-1004.
  • da Silva I.F. (2020), Describing the design thinking and Extreme Programming activities during a technology innovation academic workshop, Innovation and Management Review, No. 3, Vol. 17, pp. 267-284. doi: 10.1108/INMR-03-2019-0039.
  • Delfani F., Samanipour H., Beiki H., Yumashev A.V., Akhmetshin E.M. (2022), A robust fuzzy optimisation for a multi-objective pharmaceutical supply chain network design problem considering reliability and delivery time, International Journal of Systems Science: Operations and Logistics, No. 2, Vol. 9, pp. 155-179. doi: 10.1080/23302674.2020.1862936.
  • Durakbasa N.M., Gencyilmaz M.G. (2020), Measuring service quality in the logistic sector by using Servqual and best worst method, Lecture Notes in Mechanical Engineering. In doi: 10.1007/978-3-030-31343-2_61.
  • Dwivedi A., Agrawal D., Madaan J. (2020), Identification and prioritization of issues to implementation of information-facilitated product recovery system for a circular economy, Modern Supply Chain Research and Applications, No. 4, Vol. 2, pp. 247-280. doi: 10.1108/mscra-12-2019-0023.
  • Gunawan F.E., Andry J.F., Wijaya A.S., Tannady H. (2021), Implementation Android based e-commerce for improving business process and increasing revenue, Turkish Journal of Computer and Mathematics Education (TURCOMAT), No. 3, Vol. 12, pp. 4418-4427. doi: 10.17762/turcomat.v12i3.1821.
  • Hofer C., Barker J., Eroglu C. (2021), Interorganizational imitation in supply chain relationships: The case of inventory leanness, International Journal of Production Economics, Vol. 236, pp. 1-16. doi: 10.1016/j.ijpe.2021.108134.
  • Huddiniah E.R., Mahendrawathi E.R. (2019), Product variety, supply chain complexity and the needs for information technology: A framework based on literature review, Operations and Supply Chain Management, No. 4, Vol. 12, pp. 245-255. doi: 10.31387/oscm0390247.
  • Ibrahim M., Aftab S., Ahmad M., Iqbal A., Khan B.S., Iqbal M., Ihnaini B.N.S., Elmitwally N.S. (2020), Presenting and evaluating scaled Extreme Programming process model, International Journal of Advanced Computer Science and Applications, No. 11, Vol. 11, pp. 163-171. doi: 10.14569/IJACSA.2020.0111121.
  • Irawan Y. (2020), Decision support system for employee bonus determination with Web-Based simple additive weighting (SAW) method in PT. Mayatama Solusindo, Journal of Applied Engineering and Technological Science (JAETS), No. 1, Vol. 2, pp. 7-13. doi: 10.37385/jaets.v2i1.162.
  • Ivgantius T.Z., Andry J.F. (2019), Development of warehouse management system using Extreme Programming, International Journal of Engineering and Information Systems, No. 9, Vol. 3, pp. 39-46.
  • Izdebski M., Jacyna-Golda I., Golebiowski P., Plandor J. (2020), The optimization tool supporting supply chain management in the multi-criteria approach, Archives of Civil Engineering, No. 3, Vol. 66, pp. 505-524. doi: 10.24425/ace.2020.134410.
  • Ji M., Genchev G.Z., Huang H., Xu T., Lu H., Yu G. (2021), Evaluation framework for successful artificial intelligence-enabled clinical decision suport systems: Mixed methods study, Journal of Medical Internet Research, No. 6, Vol. 23, pp. 1-17. doi: 10.2196/25929.
  • Kamariotou M., Kitsios F., Charatsari C., Lioutas E.D., Talias M.A. (2022), Digital strategy decision support systems: Agrifood supply chain management in SMEs, Sensors, No. 1, Vol. 22, pp. 1-15. doi: 10.3390/s22010274.
  • Machado M.C., Telles R., Sampaio P., Queiroz M.M., Fernandes A.C. (2020), Performance measurement for supply chain management and quality management integration: A systematic literature review, Benchmarking, No. 7, Vol. 27, pp. 2130-2147. doi: 10.1108/BIJ-11-2018-0365.
  • Neelu L., Kavitha D. (2020), Software development technique for the betterment of end user satisfaction using agile methodology, TEM Journal, No. 3, Vol. 9, pp. 992-1002. doi: 10.18421/TEM93-22.
  • Ramathilagam A., Pitchipoo P. (2022), Modeling and development of fuzzy logic-based intelligent decision support system, Romanian Journal of Information Science and Technology, No. 1, Vol. 25, pp. 58-79.
  • Saberi S., Kouhizadeh M., Sarkis J., Shen L. (2019), Blockchain technology and its relationships to sustainable supply chain management, International Journal of Production Research, No. 7, Vol. 57, pp. 2117-2135. doi: 10.1080/00207543.2018. 1533261.
  • Saeed S., Jhanjhi N.Z., Naqvi M., Humayun M. (2019), Analysis of software development methodologies, International Journal of Computing and Digital Systems, No. 5, Vol. 8, pp. 445-460. doi: 10.12785/ijcds/080502.
  • Sohaib O., Solanki H., Dhaliwa N., Hussain W., Asif M. (2019), Integrating design thinking into Extreme Programming, Journal of Ambient Intelligence and Humanized Computing, No. 6, Vol. 10, pp. 2485-2492. doi: 10.1007/s12652-018-0932-y.
  • Stacy J., Kim R., Barrett C., Sekar B., Simon S., Banaei-Kashani F., Rosenberg M.A. (2022), Qualitative evaluation of an artificial intelligence-based clinical decision support system to guide rhythm management of atrial fibrillation: Survey study, JMIR Formative Research, No. 8, Vol. 6, pp. 1-11. doi: 10.2196/36443.
  • Sudarsono B.G. (2020), Using an Extreme Programming method for hotel reservation system development, International Journal of Emerging Trends in Engineering Research, No. 6, Vol. 8, pp. 2223-2228. doi: 10.30534/ijeter/2020/01862020.
  • Teniwut W.A., Hasyim C.L. (2020), Decision suport system in supply chain: A systematic literature review, Uncertain Supply Chain Management, No. 1, Vol. 8, pp. 131-148. doi: 10.5267/j.uscm.2019.7.009.
  • Tiwari S. (2021), Supply Chain Integration and Industry 4.0: A systematic literature review, Benchmarking, No. 3, Vol. 28, pp. 990-1030. doi: 10.1108/BIJ-08-2020-0428.
  • Valashiya M.C., Luke R. (2022), Enhancing supply chain information sharing with third party logistics service providers, International Journal of Logistics Management, No. 0957(4093), pp. 1-20. doi: 10.1108/IJLM-11-2021-0522.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171669459

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.