PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | vol. 1, t. 362 | 63--98
Tytuł artykułu

The Application of Artificial Intelligence Models in Commercial Banks - Opportunities and Threats

Autorzy
Warianty tytułu
Wykorzystanie modeli sztucznej inteligencji w bankach komercyjnych - szanse i zagrożenia
Języki publikacji
EN
Abstrakty
EN
One of the main sectors that makes heavy use of the development of advanced computational methods is the banking sector. The goals of our research are as follows: 1) to compare scientific and regulatory approaches to defining artificial intelligence (AI) and machine learning (ML), 2) to propose AI and ML definitions for regulatory purposes that allow us to clearly state if a given method is AI/ML or not, 3) to compare the complex quantitative methods applied in banking in terms of complexity and interpreta- bility in order to provide a clear classification of methods to the interested parties (practitioners and management), 4) to propose a possible approach towards the further development of quantitative methods in the areas of required strict interpretability. Our literature review focuses on the definitions of AI/ML applied by scientists and regulators, as well as the proposals of application of complex quantitative solutions in different banking domains. We propose practical definitions of AI and ML based on the current state of the art and requirements of clarity in the banking industry (a very limited risk appetite regarding regulations non-compliance) and compare quantitative methods applied in different banking domains. For regulatory purposes, we propose general and inclusive definitions of AI and ML which allow for a clear classification of specific methods. In the case of strict requirements towards the interpretability of applied methods, we propose a gradual and controlled increase in the complexity of existing solutions. Therefore, we propose the differentiation of quantitative methods in terms of interpretability and complexity. We also think that the definitions of AI/ML in further regulations should make it possible to clearly say whether particular approaches are AI/ML. Our research is directed to policymakers, practitioners, and executives related to the banking sector. (original abstract)
Jednym z głównych sektorów, które w dużym stopniu wykorzystują rozwój zaawansowanych metod obliczeniowych, jest sektor bankowy. Cele badań przedstawionych w artykule to: 1) porównanie naukowego i regulacyjnego podejścia do definiowania sztucznej inteligencji (AI) i uczenia maszynowego (ML); 2) zaproponowanie definicji AI i ML na potrzeby regulacyjne, które pozwolą jednoznacznie stwierdzić, czy dana metoda jest AI/ML, czy nie; 3) porównanie złożonych metod ilościowych stosowanych w bankowości pod względem złożoności i interpretowalności w celu jasnej klasyfikacji metod dla zainteresowanych stron (praktyków i kadry zarządzającej); 4) zaproponowanie możliwego podejścia do dalszego rozwoju metod ilościowych w obszarach o wymaganej ścisłej interpretowalności. Przegląd literatury koncentruje się na definicjach AI/ML stosowanych przez naukowców i regulatorów oraz propozycjach zastosowania złożonych rozwiązań ilościowych w różnych domenach bankowości. Badania skupione są na proponowaniu praktycznych definicji AI i ML na podstawie aktualnego stanu wiedzy i wymogów przejrzystości w branży bankowej (bardzo ograniczony apetyt na ryzyko, dotyczący niezgodności z regulacjami) oraz na porównaniu metod ilościowych stosowanych w różnych domenach bankowości wraz z ich oceną. Autor proponuje ogólne i inkluzywne definicje AI i ML na potrzeby regulacyjne, które pozwalają jednoznacznie sklasyfikować konkretne metody. W przypadku zaostrzonych wymagań dotyczących interpretowalności stosowanych metod proponuje stopniowe i kontrolowane zwiększanie złożoności istniejących rozwiązań. Z tego powodu przedstawia ocenę metod ilościowych pod względem interpretowalności i złożoności. Autor uważa również, że definicje AI/ML w dalszych regulacjach powinny umożliwiać jednoznaczne zaklasyfikowanie konkretnych podejść jako AI/ML. Badania skierowane są do twórców regulacji, praktyków i kadry zarządzającej związanej z sektorem bankowym. (abstrakt oryginalny)
Rocznik
Strony
63--98
Opis fizyczny
Twórcy
autor
  • University of Economics in Katowice, Poland
Bibliografia
  • Abdi H., Williams L.J. (2010), Principal Component Analysis, "Wiley Interdisciplinary Reviews: Computational Statistics", vol. 2, no. 4, pp. 433-459.
  • Adamopoulou E., Moussiades L. (2020), An Overview Of Chatbot Technology, [in:] Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, Proceedings, Part II , 16, pp. 373-383.
  • Aitken M., Leslie D., Ostmann F., Pratt J., Margetts H., Dorobantu C. (2022), Common Regulatory Capacity for AI, https://doi.org/10.5281/zenodo.6838946 [accessed: 1.11.2022].
  • Ala'raj M., Abbod M.F., Majdalawieh M. (2021), Modelling Customers Credit Card Behaviour Using Bidirectional LSTM Neural Networks, "Journal of Big Data", vol. 8, no. 1, pp. 1-27.
  • Alzubi J., Nayyar A., Kumar A. (2018), Machine Learning from Theory to Algorithms: An Overview, "Journal of Physics: Conference Series", vol. 1142, https://doi.org/10.1088/1742-6596/1142/1/012012
  • Artificial Intelligence: A Modern Approach, 4th Global ed. (2022), https://aima.cs.berkeley.edu/global-index.html [accessed: 11.02.2023].
  • Basu A., Manning W.G., Mullahy J. (2004), Comparing Alternative Models: Log Vs Cox Proportional Hazard?, "Health Economics", vol. 13, no. 8, pp. 749-765.
  • Bauwens L., Laurent S., Rombouts J.V. (2006), Multivariate GARCH models: a Survey, "Journal of Applied Econometrics", vol. 21, no. 1, pp. 79-109.
  • Biecek P. (2013), Analiza danych z programem R. Modele liniowe z efektami stałymi, losowymi i mieszanymi, Wydawnictwo Naukowe PWN, Warszawa.
  • Breiman L., Friedman J.H., Olshen R.A., Stone C.J. (1984), Classification and Regression Trees, The Wadsworth and Brooks, Belmond.
  • Buiten M.C. (2019), Towards Intelligent Regulation of Artificial Intelligence, "European Journal of Risk Regulation", vol. 10, no. 1, pp. 41-59.
  • Cath C. (2018), Governing Artificial Intelligence: Ethical, Legal and Technical Opportunities and Challenges, "Philosophical Transactions of the Royal Society A", vol. 376, 20180080.
  • Chan-Lau M.J.A. (2017), Lasso Regressions and Forecasting Models in Applied Stress Testing, International Monetary Fund, Washington.
  • Chen T., Guestrin C. (2016), XGBoost: A Scalable Tree Boosting System, [in:] KDD "16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, pp. 785-794, https://dl.acm.org/doi/proceedings/10.1145/2939672 [accessed: 12.02.2023].
  • Chen T.H. (2020), Do You Know Your Customer? Bank Risk Assessment Based on Machine Learning, "Applied Soft Computing", vol. 86, 105779.
  • Clarke Y.D. (2022), H.R.6580 - 117th Congress (2021-2022): Algorithmic Accountability Act of 2022, https://www.congress.gov/bill/117th-congress/house-bill/6580/text [accessed: 12.02.2023].
  • Cunningham P., Delany S.J. (2021), K-Nearest Neighbour Classifiers-A Tutorial, "ACM Computing Surveys (CSUR)", vol. 54, no. 6, pp. 1-25.
  • Cyberspace Administration of China (2022), Provisions on the Management of Algorithmic Recommendations in Internet Information Services, https://www.chinalawtranslate.com/en/algorithms/ [accessed: 12.02.2023].
  • Dal Pozzolo A. (2015), Adaptive Machine Learning for Credit Card Fraud Detection, Unpublished doctoral dissertation, Université libre de Bruxelles, Faculté des Sciences - Informatique, Bruxelles.
  • Dawood E.A.E., Elfakhrany E., Maghraby F.A. (2019), Improve Profiling Bank Customer's Behavior Using Machine Learning, "IEEE Access", vol. 7, pp. 109320-109327.
  • Dobson A.J., Barnett A.G. (2018), An Introduction to Generalized Linear Models, CRC Press, Boca Raton.
  • Domingues R., Filippone M., Michiardi P., Zouaoui J. (2018), A Comparative Evaluation of Outlier Detection Algorithms: Experiments and Analyses, "Pattern Recognition", vol. 74, pp. 406-421.
  • Dong G., Lai K.K., Yen J. (2010), Credit scorecard based on logistic regression with random coefficients, "Procedia Computer Science", vol. 1, no. 3, pp. 2463-2468.
  • Dorries N. (2022), Establishing a Pro-Innovation Approach to Regulating AI. An Overview of The UK's Emerging Approach, Presented to Parliament by The Secretary of State for Digital, Culture, Media and Sport by Command of Her Majesty, Department for Digital, Culture, Media & Sport, UK Parliament Command Paper: CP 728, London.
  • Drudi M.L., Nobili S. (2021), A Liquidity Risk Early Warning Indicator for Italian Banks: a Machine Learning Approach, Bank of Italy Temi di Discussione (Working Paper) no. 1337.
  • Emmert-Streib F., Yli-Harja O., Dehmer M. (2020), Artificial Intelligence: A Clarification of Misconceptions, "Myths and Desired Status. Frontiers in Artificial Intelligence", no. 3, 524339.
  • European Banking Authority (2020), EBA Report on Big Data and Advanced Analytics, EBA/REP/2020/01, Paris.
  • European Banking Authority (2021), EBA Discussion Paper on Machine Learning for IRB Models, EBA/DP/2021/04, Paris.
  • European Commission (2019), Ethics Guidelines for Trustworthy AI. High-Level Expert Group on Artificial Intelligence, Brussels.
  • European Commission (2021), Proposal for a Regulation of The European Parliament and of The Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts, Brussels.
  • European Commission (2022), Proposal for a Regulation of The European Parliament and of The Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts - Second Presidency compromise text, Brussels.
  • Fraser D.A.S. (1967), Data Transformations and The Linear Model, "The Annals of Mathematical Statistics", pp. 1456-1465.
  • Friedman J.H. (1991), Multivariate Adaptive Regression Splines, "Annals of Statistics", vol. 19, no. 1, pp. 1-67.
  • Ganaie M.A., Hu M., Malik A.K., Tanveer M., Suganthan P.N. (2022), Ensemble deep learning: A review, "Engineering Applications of Artificial Intelligence", vol. 115, 105151.
  • González P.C., Velásquez J.D. (2013), Characterization and Detection of Taxpayers with False Invoices Using Data Mining Techniques, "Expert Systems with Applications", vol. 40, no. 5, pp. 1427-1436.
  • Goodfellow I., Bengio Y., Courville A. (2016), Deep Learning, MIT Press, Cambridge.
  • Gosiewska A., Kozak A., Biecek P. (2021), Simpler Is Better: Lifting Interpretability-Performance Trade-Off Via Automated Feature Engineering, "Decision Support Systems", vol. 150, 113556.
  • Hastie T., Tibshirani R., Friedman J. (2008), The Elements of Statistical Learning, Springer Science + Business Media LLC, New York.
  • Hijazi S., Kumar R., Rowen C. (2015), Using Convolutional Neural Networks for Image Recognition, Cadence Design Systems Inc., San Jose.
  • Hochreiter S., Schmidhuber J. (1997), Long Short-Term Memory, "Neural Computation", vol. 9, no. 8, pp. 1735-1780.
  • Hoerl A.E., Kennard R.W. (1970), Ridge Regression: Biased Estimation for Nonorthogonal Problems, "Technometrics", vol. 12, no. 1, pp. 55-67.
  • Hopcroft J.E., Motwani R., Ullman J.D. (2007), Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Boston.
  • ISO (2017), ISO/IEC 38505-1: 2017 Information technology - Governance of IT - Governance of data - Part 1: Application of ISO/IEC 38500 to the governance of data, https://www.iso.org/standard/56639.html [accessed: 1.11.2022].
  • ISO (2022), ISO/IEC 3WD 22989 Information Technology - Artificial Intelligence - Artificial Intelligence Concepts and Terminology, https://www.iso.org/standard/74296.html [accessed: 1.11.2022].
  • Jacobs Jr. M. (2018), The Validation of Machine-Learning Models for The Stress Testing of Credit Risk, "Journal of Risk Management in Financial Institutions", vol. 11, no. 3, pp. 218-243.
  • James G., Witten D., Hastie T., Tibshirani R. (2017), An Introduction to Statistical Learning with Applications in R, Springer, New York.
  • Jiang J. (2007), Linear and Generalized Linear Mixed Models and Their Applications, Springer Science + Business Media LLC, New York.
  • Kaisler S.H., Espinosa J.A., Armour F., Money W.H. (2014), Advanced Analytics - Issues and Challenges in a Global Environment, [in:] 47th Hawaii International Conference on System Sciences, Waikoloa, pp. 729-738.
  • Kambhampati S. (2017), On the Past and Future of AI. Interviews With Experts in Artificial Intelligence, https://goo.gl/nspv6y [accessed: 12.02.2023].
  • Kanevski M.F., Timonin V . (2010), Machine Learning Analysis and Modeling of Interest Rate Curves, ESANN, Bruges.
  • Kaplan A., Haenlein M. (2019), Siri, Siri, In My Hand: Who's The Fairest in The Land? On The Interpretations, Illustrations, and Implications of Artificial Intelligence, "Business Horizons", vol. 62, no. 1, pp. 15-25.
  • Keyan L., Tingtin Y. (2011), An Improved Support-Vector Network Model for Anti-Money Laundering, [in:] Fifth International Conference on Management of e-Commerce and e-Government, IEEE, Shanghai, pp. 193-196.
  • Khan N.S., Larik A.S., Rajput Q., Haider S. (2013), A Bayesian Approach for Suspicious Financial Activity Reporting, "International Journal of Computers and Applications", vol. 35, no. 4, pp. 181-187.
  • Kotios D., Makridis G., Fatouros G., Kyriazis D. (2022), Deep Learning Enhancing Banking Services: A Hybrid Transaction Classification and Cash Flow Prediction Approach, "Journal of Big Data", vol. 9, no. 1, 100.
  • Krennmair P., Schmid T. (2022), Flexible Domain Prediction Using Mixed Effects Random Forests, "Journal of the Royal Statistical Society: Series C (Applied Statistics)", vol. 71, no. 5, pp. 1865-1894.
  • Kroll J.A. (2018), The Fallacy of Inscrutability, "Philosophical Transactions of the Royal Society A", vol. 376, 20180084.
  • Leo M., Sharma S., Maddulety K. (2019), Machine Learning in Banking Risk Management: A Literature Review, "Risks", vol. 7, no. 1, 29.
  • Li Z., Liu F., Yang W., Peng S., Zhou J. (2022), A Survey of Convolutional Neural Networks: Analysis, "Applications, and Prospects, IEEE Transactions on Neural Networks and Learning Systems", vol. 33, no. 12, pp. 6999-7019.
  • Liang T.H., Lin J.B. (2014), A Two-Stage Segment and Prediction Model for Mortgage Prepayment Prediction And Management, "International Journal of Forecasting", vol. 30, no. 2, pp. 328-343.
  • Liu F.T., Ting K.M., Zhou Z.H. (2008), Isolation Forest, [in:] Eighth IEEE International Conference on data Mining, Pisa, pp. 413-422.
  • Liu Y.H. (2018), Feature Extraction and Image Recognition with Convolutional Neural Networks, "Journal of Physics: Conference Series", vol. 1087, no. 6, 062032.
  • Loh L.K.Y., Kueh H.K., Parikh N.J., Chan H., Ho N.J.H., Chua M.C.H. (2022), An Ensembling Architecture Incorporating Machine Learning Models and Genetic Algorithm Optimization for Forex Trading, "FinTech", vol. 1, no. 2, pp. 100-124.
  • Luo T., Metawa N. (2019), Intelligent Al.gorithm of Optimal Investment Model Under Stochastic Interest Rate and Stochastic Volatility, "Journal of Intelligent & Fuzzy Systems", vol. 37, no. 1, pp. 283-292.
  • McCarthy J., Minsky M., Rochester N., Shannon C.E. (1955), A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, http://raysolomonoff.com/dartmouth/boxa/dart564props.pdf [accessed: 1.11.2022].
  • McCorduck P. (2004), Machines Who Think, A.K. Peters Ltd., Natick.
  • Mercadier M., Lardy J.P. (2019), Credit Spread Approximation and Improvement Using Random Forest Regression, "European Journal of Operational Research", vol. 277, no. 1, pp. 351-365.
  • Mihaljević B., Bielza C., Larrañaga P. (2021), Bayesian Networks for Interpretable Machine Learning and Optimization, "Neurocomputing", vol. 456, pp. 648-665.
  • Milojević N., Redzepagic S. (2021), Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management, "Journal of Central Banking Theory and Practice", vol. 10, no. 3, pp. 41-57.
  • Ministry of Economy, Trade and Industry in Japan (2022), Governance Guidelines for Implementation of AI Principles Ver. 1.1" Compiled, https://www.meti.go.jp/english/press/2022/0128_003.html [accessed: 12.02.2023].
  • Mitchell T. (1997), Machine Learning, McGraw Hill, New York.
  • Monett D., Lewis C.W.P. (2018), Getting Clarity by Defining Artificial Intelligence - A Survey, [in:] V.C. Müller (ed.), Philosophy and Theory of Artificial Intelligence 2017, Springer, Berlin, pp. 212-214.
  • Monfared S.A., Enke D. (2014), Volatility Forecasting Using a Hybrid Gjr-Garch Neural Network Model, "Procedia Computer Science", vol. 36, pp. 246-253.
  • Neal R.M. (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models, "Journal of Computational and Graphical Statistics", vol. 9, no. 2, pp. 249-265.
  • Nilsson N.J. (2010), The Quest for Artificial Intelligence. A History of Ideas and Achievements, Cambridge University Press, Cambridge.
  • NIST (2019), U.S. Leadership in AI: A Plan for Federal Engagement in Developing Technical Standards and Related Tools, National Institute of Standards and Technology, Tech. Rep, https://www.nist.gov/system/files/documents/2019/08/10/ai_standards_fedengagement_plan_9aug2019.pdf [accessed: 1.11.2022].
  • OECD (2019), Scoping the OECD AI principles: Deliberations of the Expert Group on Artificial Intelligence at the OECD (AIGO), OECD Publishing, Paris.
  • Osisanwo F.Y., Akinsola J.E.T., Awodele O., Hinmikaiye J.O., Olakanmi O., Akinjobi J. (2017), Supervised Machine Learning Algorithms: Classification and Comparison, "International Journal of Computer Trends and Technology", vol. 48, no. 3, pp. 128-138.
  • Poole D., Mackworth A., Goebel R. (1998), Computational Intelligence: A Logical Approach, Oxford University Press, New York.
  • Potrawa T., Tetereva A. (2022), How Much Is the View from The Window Worth? Machine Learning-Driven Hedonic Pricing Model of The Real Estate Market, "Journal of Business Research", vol. 144, pp. 50-65.
  • Pun J., Lawryshyn Y. (2012), Improving Credit Card Fraud Detection Using a Meta-Classification Strategy, "International Journal of Computer Applications", vol. 56, no. 10, pp. 101-105.
  • Rad H., Low R.K.Y., Miffre J., Faff R.W. (2021), The Commodity Risk Premium and Neural Networks, http://doi.org/10.2139/ssrn.3816170
  • Rao J.N.K. (2003), Small Area Estimation, John Wiley & Sons, New York.
  • Rapaport W.J. (2020), What is Artificial Intelligence?, "Journal of Artificial General Intelligence", vol. 11, no. 2, pp. 52-56.
  • Ren J., Lee S.D., Chen X., Kao B., Cheng R., Cheung D. (2009), Naive Bayes Classification of Uncertain Data, [in:] ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami, pp. 944-949.
  • Revett K., Gorunescu F., Gorunescu M., Ene M., Magalhaes S., Santos H. (2007), A Machine Learning Approach to Keystroke Dynamics Based User Authentication, "International Journal of Electronic Security and Digital Forensics", vol. 1, no. 1, pp. 55-70.
  • Russell S.J., Norvig P. (2021), Artificial Intelligence: A Modern Approach, Pearson, Hoboken.
  • Sadok H., Sakka F., El Hadi El Maknouzi M. (2022), Artificial Intelligence and Bank Credit Analysis: A Review, "Cogent Economics & Finance", vol. 10, no. 1, 2023262.
  • Sagiroglu S., Sinanc D. (2013), Big data: A review, [in:] 2013 International Conference on Collaboration Technologies and Systems (CTS), IEEE, San Diego, pp. 42-47, https://doi.org/10.1109/CTS.2013.6567202
  • Samuel A.L. (1959), Some Studies in Machine Learning Using the Game of Checkers, "IBM Journal of Research and Development", vol. 3, no. 3, pp. 210-229.
  • Sarker I.H., Kayes A.S.M., Badsha S., Alqahtani H., Watters P.N.A. (2020), Cybersecurity Data Science: an Overview from Machine Learning Perspective, "Journal of Big Data", vol. 7, pp. 1-29.
  • Schapire R.E. (2003), The Boosting Approach to Machine Learning: an Overview, [in:] D.D. Denison, M.H. Hansen, C.C. Holmes, B. Mallick, B. Yu (eds.), Nonlinear estimation and classification, Springer, New York, pp. 149-171.
  • Schultz G.M., Fabozzi F.J. (2021), Rise of the Machines: Application of Machine Learning to Mortgage Prepayment Modeling, "The Journal of Fixed Income", vol. 31, no. 3, pp. 6-19.
  • Shalev-Shwartz S., Ben-David S. (2014), Understanding Machine Learning from Theory to Algorithms, Cambridge University Press, Cambridge.
  • Smola A.J., Schölkopf B. (2004), A tutorial on support vector regression, "Statistics and Computing", vol. 14, no. 3, pp. 199-222, https://doi.org/10.1023/B:STCO.0000035301.49549.88
  • Solomonoff R.J. (1985), The Time Scale of Artificial Intelligence; Reflections on Social Effects, "Human Systems Management", vol. 5, pp. 149-153.
  • Tavana M., Abtahi A.R., Di Caprio D., Poortarigh M. (2018), An Artificial Neural Network and Bayesian Network Model for Liquidity Risk Assessment in Banking, "Neurocomputing", vol. 275, pp. 2525-2554.
  • The American National Standard Dictionary for Information Technology ANSDIT (2022), ANSI INCITS 172-220 (R2007) Information Technology (Revision and Redesignation of ANSI X3.172-1996), https://webstore.ansi.org/Standards/INCITS/ansiincits1722002r2007 [accessed: 1.11.2022].
  • Thrun S., Langford J. (1998), Monte Carlo Hidden Markov Models, Carnegie-Mellon University, School of Computer Science, Pittsburgh.
  • Tibshirani R. (1996), Regression Shrinkage and Selection via the LASSO, "Journal of the Royal Statistical Society, Series B (Methodological)", vol. 58, no. 1, pp. 267-288.
  • Turing A.M. (1950), Computing Machinery and Intelligence, "Mind a Quarterly Review of Psychology and Philosophy", vol. 236, pp. 433-460.
  • Vapnik V., Levin E., Cun Y.L. (1994), Measuring The VC-Dimension of a Learning Machine, "Neural Computation", vol. 6, no. 5, pp. 851-876.
  • Verma P. (2020), Churn Prediction for Savings Bank Customers: A machine Learning Approach, "Journal of Statistics Applications & Probability", vol. 9, no. 3, pp. 535-547.
  • Wang P. (2008), What Do You Mean by "AI", "Frontiers in Artificial Intelligence and Applications", vol. 171, no. 1, pp. 362-373.
  • Wang P. (2019), On Defining Artificial Intelligence, "Journal of Artificial General Intelligence", vol. 10, no. 2, pp. 1-37.
  • Wang Y., Zhang Y., Lu Y., Yu X . (2020), A Comparative Assessment of Credit Risk Model Based on Machine Learning - a Case Study of Bank Loan Data, "Procedia Computer Science", vol. 174, pp. 141-149.
  • Yampolskiy R.V. (2020), On Defining Differences between Intelligence and Artificial Intelligence, "Journal of Artificial General Intelligence", vol. 11, no. 2, pp. 68-70.
  • Yampolskiy R.V., Fox J. (2012), Artificial General Intelligence and the Human Mental Model, [in:] A. Eden, J. Søraker, J.H. Moor, E. Steinhart (eds.), Singularity Hypotheses: A Scientific and Philosophical Assessment, Springer, Berlin, pp. 129-145.
  • Yang B.H., Tkachenko M. (2012), Modeling Exposure at Default and Loss Given Default: Empirical Approaches and Technical Implementation, "The Journal of Credit Risk", vol. 8, no. 2, 81.
  • Ye T., Zhang L. (2019), Derivatives Pricing Via Machine Learning, Boston University Questrom School of Business Research Paper, no. 3352688.
  • Zahi S., Achchab B. (2020), Modeling Car Loan Prepayment Using Supervised Machine Learning, "Procedia Computer Science", vol. 170, pp. 1128-1133.
  • Zhang H.G., Su C.W., Song Y., Qiu S., Xiao R., Su F. (2017), Calculating Value-At-Risk for High-Dimensional Time Series Using a Nonlinear Random Mapping Model, "Economic Modelling", vol. 67, pp. 355-367.
  • Zhang J., Teng F., Lin S. (2019), Agency MBS Prepayment Model Using Neural Networks, "The Journal of Structured Finance", vol. 24, no. 4, pp. 17-33.
  • Zou H., Hastie T. (2005), Regularization and variable selection via the elastic net, "Journal of The Royal Statistical Society: Series B (Statistical Methodology)", vol. 67, no. 2, pp. 301-320.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171671502

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.