PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | 19 | nr 4 | 641--654
Tytuł artykułu

The Effects of Supply Chain Complexity on Resilience - a Simulation-Based Study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The aim of the paper is to analyse the effects of disruptions on supply chain performance and overall resilience. In recent years, global supply chains have been under great pressure and faced many challenges, like demand fluctuation, lack of raw materials or supply, disruption of transportation corridors and lockdowns. As a response to this, global companies started to reorganize their supply chains, trying to save and maintain their core operations by reshoring, multiple sourcing or increasing their inventory levels, and thereby reaching a higher level of long-term supply-chain sustainability. Methods: The disruptive changes in transportation resources and their overall impact on supply chains and their complexity were explored. By using the simulation tool Simul8, hypotheses on how disruptive events influence supply chain performance were tested. The model tested key performance indicators (KPIs) of 3- and 4-tier supply chains, primarily average lead time in the system, average idle time in process, and resource utilization level. Results: In this study, a standard 3-tier supply chain model was compared with a 4-tier supply chain model to determine how KPIs change when there is disruption to transport and storage capabilities. The results indicate that in case of disruption, the 3-tier supply chain performs better than the 4-tier supply chain, even if the 4th tier is a cross-docking center inserted into the system to be able to react to demand fluctuations quickly. Based on this outcome, complexity does not serve resilience. Conclusions: Based on the simulations performed, recommendations are formulated for practitioners on how to develop the structure of supply chains, taking into account their level of resilience. (original abstract)
Czasopismo
Rocznik
Tom
19
Numer
Strony
641--654
Opis fizyczny
Twórcy
autor
  • University of Defence in Brno, Czech Republic
autor
  • Corvinus University of Budapest, Hungary
Bibliografia
  • Byritis, D. (2014). Simulation of the transit time through the port of Dover. Thesis in MSc in Management Science, University of Kent.
  • Cárdenas, O., Valencia, A., Montt, C. (2018). Congestion minimization trough sustainable traffic management. A micro-simulation approach. Logforum 14 (1), 2. https://doi.org/https://doi.org/10.17270/J.LOG.2018.260
  • Chang, K. H., Hsiung, T. Y., Chang, T. Y. (2022). Multi-Commodity distribution under uncertainty in disaster response phase: Model, solution method, and an empirical study. European Journal of Operational Research, 303(2), 857-876. https://doi.org/10.1016/j.ejor.2022.02.055
  • Dey, B., Dikshit, P., Sehgal, S., Trehan, V., Kumar Sehgal, V. (2022). Intelligent solutions for earthquake data analysis and prediction for future smart cities. Computers & Industrial Engineering, 170, 108368, https://doi.org/10.1016/j.cie.2022.108368
  • Dujak, D., Zdziarska, M., Kolinski, A. (2017). GLN standard as a facilitator of physical location identification within process of distribution. LogForum, 13(3), 247-261, https://doi.org/10.17270/J.LOG.2017.3.1
  • Filipovska, M., Mahmassani, H. S., Mittal, A. (2021). Estimation of path travel time distributions in stochastic time-varying networks with correlations. Transportation Research Record, 2675(11), 498-508. https://doi.org/10.1177/03611981211018464
  • Guan, D., Wang, D., Hallegatte, S., Davis, S. J., Huo, J., Li, S., ... & Gong, P. (2020) Global supply-chain effects of COVID-19 control measures. Nature human behaviour, 4(6), 577-587, https://doi.org/10.1038/s41562-020-0896-8
  • Gubán, M., Arató, Á., Papp, B. (2017). Egy szolgáltatási logisztikai folyamat szimu-lációs vizsgálata. Logisztika Trendek és legjobb gyakorlatok, 3(1), 25-29, https://doi.org/10.21405/logtrend.2016.2.2.25
  • Helou, M., Caddy, I. (2006). Definition problems and a general systems theory perspective in supply chain management. Problems and Perspectives in Management, 4, 77-83.
  • Jałowiec, T., Dębicka, E. (2017). Contemporary Threats to the Continuity of Transport Systems. Logistics and Transport, 34. 15-23.
  • Jámbor, Z., Nagy, J. (2022). Resilience of food supply chains-a dynamic capability approach. Ekonomska misao i praksa, 31(2), 473-486, https://doi.org/10.17818/EMIP/2022/2.6
  • Kolinski, A., Sliwczynski, B., Golinska-Dawson, P. (2017). The assessment of the economic efficiency of production process - Simulation approach, in 24th International Conference on Production Research, in DEStech Transactions on Engineering and Technology Research, 2(3), 283-289.
  • Medyakova, E. M., Kislitskaya, N. A., Kudinova, S. G., Gerba, V. A. (2020). COVID-19 as a trigger for global transport infrastructure digitalization, in IOP Conference Series: Materials Science and Engineering, 918(1), 012227. IOP Publishing. https://doi.org/10.1088/1757-899X/918/1/012227
  • Nagy, J., Foltin, P., Ondryhal, V. (2022). Use of Big Data Analysis to Identify Possible Sources of Supply Chain Disruption Through the DOTMLPFI Method. LogForum, 18(3), 309-311, https://doi.org/10.17270/J.LOG.2022.731
  • Nagy, J., Foltin, P. (2022). Increase Supply Chain Resilience by Applying Early Warning Signals within Big-Data Analysis. Ekonomski vjesnik - Review of Contemporary Business, Entrepreneurship and Economic Issues, 35(2), 467-481, https://doi.org/10.51680/ev.35.2.17
  • Ponomarov, S. Y., Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143, https://doi.org/10.1108/09574090910954873
  • Preston, C., Horne, P., O'Hanley, J., Scaparra, M.P. (2018). Traffic Modelling at the Port of Dover, Impact, 1, 7-11, https://doi.org/10.1080/2058802X.2018.1452422
  • Rangel, D. A., de Oliveira, T. K., Leite, M. S. A. (2015). Supply chain risk classification: discussion and proposal. International Journal of Production Research, 53, 6868-6887, https://doi.org/10.1080/00207543.2014.910620
  • Rehak, D., Flynnova, L., Malekjafarian, A. (2023) Methodological Framework for Assessing and Strengthening the Resistance of Railway Critical Infrastructure Elements, in TRANSBALTICA XIII: Transportation Science and Technology, Prentkovskis, O., Yatskiv, I., Skačkauskas, P., Maruschak, P. & Karpenko, M. (eds.), 737-745 (Springer International Publishing). https://doi.org/10.1007/978-3-031-25863-3_71
  • Rannane, Y., Mharzi, H., El Oualidi, M. A. (2022). A systematic review of the supply chain resilience measurement literature. In 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), 1-6, https://doi.org/10.1109/LOGISTIQUA55056.2022.9938107
  • Sliwczynski, B., Kolinski, A. (2016). Controlling supply chains: Theory and practice, Nova Science Publishers: New York.
  • Sopha, B. M., Sakti, S., Prasetia, A. C. G., Dwiansarinopa, M. W., Cullinane, K. (2021). Simulating long-term performance of regional distribution centers in archipelagic logistics systems. Maritime Economics & Logistics, 23, 697-725. https://doi.org/10.1057/s41278-020-00166-3
  • Stajniak, M., Koliński, A. (2016). The impact of transport processes standardization on supply chain efficiency. Logforum 12 (1), 4. https:/doi.org/10.17270/J.LOG.2016.1.4
  • Stone, J., Rahimifard, S. (2018). Resilience in agri-food supply chains: a critical analysis of the literature and synthesis of a novel framework. Supply Chain Management: An International Journal, 23(3), 207-238, https://doi.org/10.1108/SCM-06-2017-0201
  • Sun, R., Zhu, G., Liu, B., Li, X., Yang, Y., Zhang, J. (2022). Vulnerability analysis of urban rail transit network considering cascading failure evolution. Journal of Advanced Transportation, 2022. https://doi.org/10.1155/2022/2069112
  • Suryawanshi, P., Dutta, P., Varun, L., Deepak, G. (2021). Sustainable and resilience planning for the supply chain of online hyperlocal grocery services. Sustainable Production and Consumption, 28, 496-518. https://doi.org/10.1016/j.spc.2021.05.001
  • Tamás, P. (2017). Lean eszközök hatékonyságnövelése szimulációs modellezés felhasználásával. Logisztikai-Informatikai-Menedzsment, 2(1), 61-71.
  • Tonn, G., Kesan, J.P., Zhang, L., Czajkowski, J. (2019). Cyber risk and insurance for transportation infrastructure. Transport Policy, 79, 103-114, https://doi.org/10.1016/j.tranpol.2019.04.019
  • Wang, Q., Sigler, D., Liu, Z., Kotz, A., Kelly, K., Phillips, C. (2022). ASPIRES: Airport Shuttle Planning and Improved Routing Event-driven Simulation. Transportation Research Record, 2676(12), 85-95. https://doi.org/10.1177/03611981221095744
  • Weisbrod, G., Vary, D., Treyz, G. (2003). Measuring economic costs of urban traffic congestion to business. Transportation research record, 1839(1), 98-106. https://doi.org/10.3141/1839-10
  • Yang, Q., Scoglio, C. M., Gruenbacher, D. M. (2021). Robustness of supply chain networks against underload cascading failures. Physica A: Statistical Mechanics and its Applications, 563, 125466. https://doi.org/10.1016/j.physa.2020.125466
  • Yao, Y., Meurier, B. (2012). Understanding the supply chain resilience: a Dynamic Capabilities approach. 9es Rencontres Internationales de la Recherche en Logistique. 15-17 August, 2012. Retrieved at 10.09.2021. from: https://escholarship.org/uc/item/9jh2r8sb
  • Ullrich Ch.A., 2013, Integrated machine scheduling and vehicle routing with time windows, European Journal of Operational Research, 227, 152-165, https://doi.org/10.1016/j.ejor.2012.11.049
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171677809

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.