Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Research background: The business cycle (BC) approaches have found extensive use in economic analysis and forecasting. Especially in the last 40 years, various modern BC models have been proposed and have experienced rapid development. However, there are no recent studies that provide a systematic review of the publications on this topic.
Purpose of the article: This paper aims to comprehensively review publications of BC approaches based on the cause, nature and methods of measurement BC, with the goal of identifying the current research states, research gaps and future trends of BC approaches.
Methods: A systematic literature review of BC approaches is conducted by qualitatively introducing the cause and the nature of BCs and quantitatively analyzing the methods of measurement BCs. We selected 206 articles related to BC approaches from the WoS Core Collection and Google Scholar database, spanning the years 1946 to 2022, for comprehensive statistical and content analysis. The statistical analysis presents the distribution of publication years, the most popular journals and the highly cited publications. The content analysis classifies the selected publications into 6 categories based on methods of measurement BCs, and the theory, technique and applications of each category are analyzed in detail.
Findings & value added: The analysis results indicate that BC approaches have progressively evolved in sophistication and have found widespread application in decomposing trends within economic time series, quantifying the nature of business cycles, and elucidating the causes and transmission mechanisms underlying them. This review paper provides current states, research challenges and future directions in effectively employing BC approaches for empirical study. (original abstract)
Purpose of the article: This paper aims to comprehensively review publications of BC approaches based on the cause, nature and methods of measurement BC, with the goal of identifying the current research states, research gaps and future trends of BC approaches.
Methods: A systematic literature review of BC approaches is conducted by qualitatively introducing the cause and the nature of BCs and quantitatively analyzing the methods of measurement BCs. We selected 206 articles related to BC approaches from the WoS Core Collection and Google Scholar database, spanning the years 1946 to 2022, for comprehensive statistical and content analysis. The statistical analysis presents the distribution of publication years, the most popular journals and the highly cited publications. The content analysis classifies the selected publications into 6 categories based on methods of measurement BCs, and the theory, technique and applications of each category are analyzed in detail.
Findings & value added: The analysis results indicate that BC approaches have progressively evolved in sophistication and have found widespread application in decomposing trends within economic time series, quantifying the nature of business cycles, and elucidating the causes and transmission mechanisms underlying them. This review paper provides current states, research challenges and future directions in effectively employing BC approaches for empirical study. (original abstract)
Słowa kluczowe
Twórcy
autor
- Sichuan University, China
autor
- Sichuan University, China
autor
- Sichuan University, China
autor
- Juraj Dobrila University of Pula, Croatia
Bibliografia
- Ameer, R. (2014). Financial constraints and corporate investment in Asian countries. Journal of Asian Economics, 33, 44-55. doi: 10.1016/j.asieco.2014.05.004.
- An, S., & Schorfheide, F. (2007). Bayesian analysis of DSGE models. Econometric Reviews, 26(2-4), 113-172. doi: 10.1080/07474930701220071.
- Artis, M., Krolzig, H. M., & Toro, J. (2004). The European business cycle. Oxford Economic Papers-New Series, 56(1), 1-44. doi: 10.1093/oep/56.1.1.
- Artis, M., & Okubo, T. (2011). The intranational business cycle in Japan. Oxford Economic Papers-New Series, 63(1), 111-133. doi: 10.1093/oep/gpq022.
- Backus, D. K., Kehoe, P. J., & Kydland, F. E. (1992). International real business cycles. Journal of Political Economy, 100(4), 745-775. doi: 10.1086/261838.
- Baxter, M., & King, R. G. (1999). Measuring business cycles: Approximate band-pass filters for economic time series. Review of Economics and Statistics, 81(4), 575-593. doi: 10.1162/003465399558454.
- Ben, A. N. (2009). Analysis of shocks affecting Europe: EMU and some Central and Eastern acceding countries. Panoeconomicus, 56(1), 21-38. doi: 10.2298/PAN0901021B.
- Berger, T., & Wortmann, M. (2022). Global vs. group-specific business cycles: The importance of defining the groups. Macroeconomic Dynamics, 26(1), 49-71. doi: 10.1017/s1365100520000048.
- Bernard, H., & Gerlach, S. (1998). Does the term structure predict recessions? The international evidence. International Journal of Finance & Economics, 3(3), 195-215. doi: 10.1002/(sici)1099-1158(199807)3:3<195::Aid-ijfe81>3.0.Co;2-m.
- Beveridge, S., & Nelson, C. R. (1981). A new approach to decomposition of economic time-series into permanent and transitory components with particular attention to measurement of the business-cycle. Journal of Monetary Economics, 7(2), 151-174. doi: 10.1016/0304-3932(81)90040-4.
- Blanchard, O. J., & Quah, D. (1989). The dynamic effects of aggregate demand and supply disturbances. American Economic Review, 79(4), 655-673. doi: 10.3386/w2737.
- Bloom, N., Floetotto, M., Jaimovich, N., Saporta-Eksten, I., & Terry, S. J. (2018). Really uncertain business cycles. Econometrica, 86(3), 1031-1065. doi: 10.3982/ecta10927.
- Boldin, M. D. (1994). Dating turning-points in the business-cycle. Journal of Business, 67(1), 97-131. doi: 10.1086/296625.
- Born, B., & Pfeifer, J. (2014). Policy risk and the business cycle. Journal of Monetary Economics, 68, 68-85. doi: 10.1016/j.jmoneco.2014.07.012.
- Buckle, R. A., Kim, K., Kirkham, H., McLellan, N., & Sharma, J. (2007). A structural var business cycle model for a volatile small open economy. Economic Modelling, 24(6), 990-1017. doi: 10.1016/j.econmod.2007.04.003.
- Burns, A. F., & Mitchell, W. C. (1946). Measuring business cycles: National Bureau of economic research.
- Camacho, M. (2004). Vector smooth transition regression models for us GDP and the composite index of leading indicators. Journal of Forecasting, 23(3), 173-196. doi: 10.1002/for.912.
- Camacho, M., & Domenech, R. (2012). Mica-bbva: A factor model of economic and financial indicators for short-term GDP forecasting. Series-Journal of the Spanish Economic Association, 3(4), 475-497. doi: 10.1007/s13209-011-0078-z.
- Camacho, M., Perez-Quiros, G., & Poncela, P. (2018). Markov-switching dynamic factor models in real time. International Journal of Forecasting, 34(4), 598-611. doi: 10.1016/j.ijforecast.2018.05.002.
- Canova, F. (1998). Detrending and business cycle facts. Journal of Monetary Economics, 41(3), 475-512. doi: 10.1016/s0304-3932(98)00006-3.
- Canova, F., Ciccarelli, M., & Ortega, E. (2007). Similarities and convergence in g-7 cycles. Journal of Monetary Economics, 54(3), 850-878. doi: 10.1016/j.jmoneco.2005.10.022.
- Caraiani, P. (2012). Stylized facts of business cycles in a transition economy in time and frequency. Economic Modelling, 29(6), 2163-2173. doi: 10.1016/j.econmod.2012.06.014.
- Caraiani, P. (2013). Using complex networks to characterize international business cycles. Plos One, 8(3), e58109. doi: 10.1371/journal.pone.0058109.
- Castro, V. (2013). The duration of business cycle expansions and contractions: Are there change-points in duration dependence? Empirical Economics, 44(2), 511-544. doi: 10.1007/s00181-011-0544-2.
- Chari, V. V., Kehoe, P. J., & McGrattan, E. R. (2007). Business cycle accounting. Econometrica, 75(3), 781-836. doi: 10.1111/j.1468-0262.2007.00768.x.
- Chauvet, M. (1998). An econometric characterization of business cycle dynamics with factor structure and regime switching. International Economic Review, 39(4), 969-996. doi: 10.2307/2527348.
- Chauvet, M., & Piger, J. (2008). A comparison of the real-time performance of business cycle dating methods. Journal of Business & Economic Statistics, 26(1), 42-49. doi: 10.1198/073500107000000296.
- Chauvet, M., & Senyuz, Z. (2016). A dynamic factor model of the yield curve components as a predictor of the economy. International Journal of Forecasting, 32(2), 324-343. doi: 10.1016/j.ijforecast.2015.05.007.
- Christensen, I., & Dib, A. (2008). The financial accelerator in an estimated new Keynesian model. Review of Economic Dynamics, 11(1), 155-178. doi: 10.1016/j.red.2007.04.006.
- Christiano, L. J., Eichenbaum, M., & Evans, C. L. (2005). Nominal rigidities and the dynamic effects of a shock to monetary policy. Journal of Political Economy, 113(1), 1-45. doi: 10.1086/426038.
- Christiano, L. J., & Fitzgerald, T. J. (2003). The band pass filter. International Economic Review, 44(2), 435-465. doi: 10.1111/1468-2354.t01-1-00076.
- Christiano, L. J., Motto, R., & Rostagno, M. (2014). Risk shocks. American Economic Review, 104(1), 27-65. doi: 10.1257/aer.104.1.27.
- Clements, M. P., & Krolzig, H. M. (2003). Business cycle asymmetries: Characterization and testing based on Markov-switching autoregressions. Journal of Business & Economic Statistics, 21(1), 196-211. doi: 10.1198/073500102288618892.
- Cologni, A., & Manera, M. (2008). Oil prices, inflation and interest rates in a structural cointegrated var model for the G-7 countries. Energy Economics, 30(3), 856-888. doi: 10.1016/j.eneco.2006.11.001.
- Cologni, A., & Manera, M. (2009). The asymmetric effects of oil shocks on output growth: A Markov-switching analysis for the G-7 countries. Economic Modelling, 26(1), 1-29. doi: 10.1016/j.econmod.2008.05.006.
- Cooley, T. F., & Dwyer, M. (1998). Business cycle analysis without much theory - A look at structural vars. Journal of Econometrics, 83(1-2), 57-88. doi: 10.1016/s0304 -4076(97)00065-1.
- Costa, L., Guedes de Oliveira, F., Leitao, A., & Paredes, J. (2020). Business cycles and trends in Germany and Portugal: Macroeconomic policy implications in the euro area. European Planning Studies, 29(4), 654-680. doi: 10.1080/09654313.2020.1766424.
- Crucini, M. J., Kose, M. A., & Otrok, C. (2011). What are the driving forces of international business cycles? Review of Economic Dynamics, 14(1), 156-175. doi: 10.1016/j.red.2010.09.001.
- Davig, T., & Hall, A. S. (2019). Recession forecasting using Bayesian classification. International Journal of Forecasting, 35(3), 848-867. doi: 10.1016/j.ijforecast.2018.08.005.
- Dees, S., Di Mauro, F., Pesaran, M. H., & Smith, L. V. (2007). Exploring the international linkages of the euro area: A global var analysis. Journal of Applied Econometrics, 22(1), 1-38. doi: 10.1002/jae.932.
- Diebold, F. X., & Rudebusch, G. D. (1996). Measuring business cycles: A modern perspective. Review of Economics and Statistics, 78(1), 67-77. doi: 10.2307/2109848.
- Drake, L., & Mills, T. C. (2010). Trends and cycles in euro area real GDP. Applied Economics, 42(11), 1397-1401. doi: 10.1080/00036840701721372.
- Eo, Y., & Kim, C. J. (2016). Markov-switching models with evolving regime-specific parameters: Are postwar booms or recessions all alike? Review of Economics and Statistics, 98(5), 940-949. doi: 10.1162/REST_a_00561.
- Estrella, A., & Mishkin, F. S. (1998). Predicting us recessions: Financial variables as leading indicators. Review of Economics and Statistics, 80(1), 45-61. doi: 10.1162/003465398557320.
- Filardo, A. J. (1994). Business-cycle phases and their transitional dynamics. Journal of Business & Economic Statistics, 12(3), 299-308. doi: 10.2307/1392086.
- Fiorito, R., & Kollintzas, T. (1994). Stylized facts of business cycles in the G7 from a real business cycles perspective. European Economic Review, 38(2), 235-269. doi: 10.1016/0014-2921(94)90057-4.
- Forinirni, M., Gambetti, L., Lippi, M., & Sala, L. (2017). Noisy news in business cycles. American Economic Journal-Macroeconomics, 9(4), 122-152. doi: 10.1257/mac.20150359.
- Forni, M., Gambetti, L., & Sala, L. (2014). No news in business cycles. Economic Journal, 124(581), 1168-1191. doi: 10.1111/ecoj.12111.
- Forni, M., & Lippi, M. (2001). The generalized dynamic factor model: Representation theory. Econometric Theory, 17(6), 1113-1141. doi: 10.1017/s0266466601176048.
- Friedman, M., & Schwartz, A. J. (2008). A monetary history of the United States, 1867- 1960 (Vol. 16): Princeton University Press.
- Gadea, M. D., Gomez-Loscos, A., & Montanes, A. (2012). Cycles inside cycles: Spanish regional aggregation. Series-Journal of the Spanish Economic Association, 3(4), 423-456. doi: 10.1007/s13209-011-0068-1.
- Goldfeld, S. M., & Quandt, R. E. (1973). A Markov model for switching regressions. Journal of Econometrics, 1(1), 3-15. doi: 10.1016/0304-4076(73)90002-X.
- Goodwin, T. H. (1993). Business-cycle analysis with a markov-switching model. Journal of Business & Economic Statistics, 11(3), 331-339. doi: 10.2307/1391958.
- Gossel, S. J., & Biekpe, N. (2012). South Africaʹs post-liberalised capital flows and business cycle fluctuations. South African Journal of Economics, 80(4), 510-525. doi: 10.1111/j.1813-6982.2012.01331.x.
- Gregory, A. W., Head, A. C., & Raynauld, J. (1997). Measuring world business cycles. International Economic Review, 38(3), 677-701. doi: 10.2307/2527287.
- Guerin, P., & Marcellino, M. (2013). Markov-switching midas models. Journal of Business & Economic Statistics, 31(1), 45-56. doi: 10.1080/07350015.2012.727721.
- Hamilton, J. D. (1989). A new approach to the economic-analysis of nonstationary time-series and the business-cycle. Econometrica, 57(2), 357-384. doi: 10.2307/1912559.
- Hamilton, J. D. (2018). Why you should never use the Hodrick-Prescott filter. Review of Economics and Statistics, 100(5), 831-843. doi: 10.1162/rest_a_00706.
- Hamilton, J. D., & Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64(1-2), 307-333. doi: 10.1016/0304-4076(94)90067-1.
- Hao, L. L., & Ng, E. C. Y. (2011). Predicting Canadian recessions using dynamic probit modelling approaches. Canadian Journal of Economics-Revue Canadienne D Economique, 44(4), 1297-1330. doi: 10.1111/j.1540-5982.2011.01675.x.
- Harding, D., & Pagan, A. (2002). Dissecting the cycle: A methodological investigation. Journal of Monetary Economics, 49(2), 365-381. doi: 10.1016/s0304-3932(01)00108-8.
- Harvey, A. C. (1985). Trends and cycles in macroeconomic time-series. Journal of Business & Economic Statistics, 3(3), 216-227. doi: 10.2307/1391592.
- He, D., & Liao, W. (2012). Asian business cycle synchronization. Pacific Economic Review, 17(1), 106-135. doi: 10.1111/j.1468-0106.2011.00574.x.
- He, Q., Chong, T. T. L., & Shi, K. (2009). What accounts for Chinese business cycle? China Economic Review, 20(4), 650-661. doi: 10.1016/j.chieco.2009.05.008.
- Hodrick, R. J., & Prescott, E. C. (1997). Postwar us business cycles: An empirical investigation. Journal of Money Credit and Banking, 29(1), 1-16. doi: 10.2307/2953682.
- Iacobucci, A., & Noullez, A. (2005). A frequency selective filter for short-length time series. Computational Economics, 25(1-2), 75-102. doi: 10.1007/s10614-005-6276-7.
- Ince, O., & Papell, D. H. (2013). The (un)reliability of real-time output gap estimates with revised data. Economic Modelling, 33, 713-721. doi: 10.1016/j.econmod.2013.05.023.
- Jakimowicz, A., & Rzeczkowski, D. (2019). Firm ownership and size versus innovation activities over the business cycle: Near-zero inertia as a sign of the transition from the fifth to the sixth Kondratieff wave. Oeconomia Copernicana, 10(4), 689-741. doi: 10.24136/oc.2019.033.
- Jiang, D., & Weder, M. (2021). American business cycles 1889-1913: An accounting approach. Journal of Macroeconomics, 67, 103285. doi: 10.1016/j.jmacro.2020.103285..
- Justiniano, A., Primiceri, G. E., & Tambalotti, A. (2010). Investment shocks and business cycles. Journal of Monetary Economics, 57(2), 132-145. doi: 10.1016/j.jmoneco.2009.12.008.
- Kabundi, A., & Loots, E. (2007). Co-movement between South Africa and the southern African development community: An empirical analysis. Economic Modelling, 24(5), 737-748. doi: 10.1016/j.econmod.2007.02.001.
- Kauppi, H., & Saikkonen, P. (2008). Predicting U.S recessions with dynamic binary response models. Review of Economics and Statistics, 90(4), 777-791. doi: 10.1162/rest.90.4.777.
- Kehoe, P. J., Midrigan, V., & Pastorino, E. (2018). Evolution of modern business cycle models: Accounting for the great recession. Journal of Economic Perspectives, 32(3), 141-166. doi: 10.1257/jep.32.3.141.
- Keynes, J. M. (1937). The general theory of employment. Quarterly Journal of Economics, 51, 209-223. doi: 10.2307/1882087.
- Kim, C. J. (1994). Dynamic linear-models with markov-switching. Journal of Econometrics, 60(1-2), 1-22. doi: 10.1016/0304-4076(94)90036-1.
- Kim, C. J., & Nelson, C. R. (1998). Business cycle turning points, a new coincident index, and tests of duration dependence based on a dynamic factor model with regime switching. Review of Economics and Statistics, 80(2), 188-201. doi: 10.1162/003465398557447.
- Kim, C. J., & Nelson, C. R. (1999). Has the us economy become more stable? A Bayesian approach based on a markov-switching model of the business cycle. Review of Economics and Statistics, 81(4), 608-616. doi: 10.1162/003465399558472.
- Kim, I. M., & Loungani, P. (1992). The role of energy in real business-cycle models. Journal of Monetary Economics, 29(2), 173-189. doi: 10.1016/0304-3932(92)90011-p.
- King, R. G., Plosser, C. I., & Rebelo, S. T. (1988). Production, growth, and business cycles: I. The basic neoclassical model. Journal of Monetary Economics, 21(2-3), 195-232. doi: 10.1016/0304-3932(88)90030-X.
- King, R. G., & Rebelo, S. T. (1993). Low-frequency filtering and real business cycles. Journal of Economic Dynamics & Control, 17(1-2), 207-231. doi: 10.1016/s0165-1889(06)80010-2.
- Klarl, T. (2020). The response of CO2 emissions to the business cycle: New evidence for the us. Energy Economics, 85, 104560. doi: 10.1016/j.eneco.2019.104560.
- Kobayashi, K., & Inaba, M. (2006). Business cycle accounting for the Japanese economy. Japan and the World Economy, 18(4), 418-440. doi: 10.1016/j.japwor.2006.04.003.
- Konstantakopoulou, I., & Tsionas, E. G. (2014). Half a century of empirical evidence of business cycles in OECD countries. Journal of Policy Modeling, 36(2), 389-409.
- Koopmans, T. C. (1947). Measurement without theory. Review of Economic Statistics, 29(3), 161-172. doi: 10.2307/1928627.
- Korobilis, D., & Pettenuzzo, D. (2019). Adaptive, hierarchical priors for highdimensional vector autoregressions. Journal of Econometrics, 212(1), 241-271. doi: 10.1016/j.jeconom.2019.04.029.
- Kydland, F. E., & Prescott, E. C. (1982). Time to build and aggregate fluctuations. Econometrica, 50(6), 1345-1370. doi: 10.2307/1913386.
- Kydland, F. E., & Prescott, E. C. (1990). Business cycles: Real facts and a monetary myth. Federal Reserve Bank of Minneapolis Quarterly Review, 14(2), 3-18. doi: 10.21034/qr.1421.
- Lam, P. S. (1990). The Hamilton model with a general autoregressive component - estimation and comparison with other models of economic time-series. Journal of Monetary Economics, 26(3), 409-432. doi: 10.1016/0304-3932(90)90005-o.
- Leiva-Leon, D. (2017). Measuring business cycles intra-synchronization in us: A regime-switching interdependence framework. Oxford Bulletin of Economics and Statistics, 79(4), 513-545. doi: 10.1111/obes.12157.
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux,P. J., Kleijnen, J., & Moher, D. (2009). The Prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Plos Medicine, 6(7), e1000100. doi: 10.1371/journal.pmed.1000100.
- Long, J. B., & Plosser, C. I. (1983). Real business cycles. Journal of Political Economy, 91(1), 39-69. doi: 10.1086/261128.
- Lucas, J., & Robert, E. (1972). Expectations and the neutrality of money. Journal of Economic Theory, 4(2), 103-124. doi: 10.1016/0022-0531(72)90142-1.
- Lucas, R. E. (1977). Understanding business cycles. Carnegie-Rochester Conference Series on Public Policy, 5, 7-29. doi: 10.1016/0167-2231(77)90002-1.
- Lv, S., Xu, Z., Fan, X., Qin, Y., & Skare, M. (2023). The mean reversion/persistence of financial cycles: Empirical evidence for 24 countries worldwide. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(1), 11-47. doi: 10.24136/eq.2023.001.
- Massmann, M., Mitchell, J., & Weale, M. (2003). Business cycles and turning points: A survey of statistical techniques. National Institute Economic Review, 183, 90-106. doi: 10.1177/0027950103183001465.
- Merola, R. (2015). The role of financial frictions during the crisis: An estimated dsge model. Economic Modelling, 48, 70-82. doi: 10.1016/j.econmod.2014.10.037.
- Morley, J., & Piger, J. (2012). The asymmetric business cycle. Review of Economics and Statistics, 94(1), 208-221. doi: 10.1162/REST_a_00169.
- Murray, C. J. (2003). Cyclical properties of Baxter-king filtered time. Review of Economics and Statistics, 85(2), 472-476. doi: 10.1162/003465303765299945.
- Neumeyer, P. A., & Perri, F. (2005). Business cycles in emerging economies: The role of interest rates. Journal of Monetary Economics, 52(2), 345-380. doi: 10.1016/j.jmoneco.2004.04.011.
- Nyberg, H. (2018). Forecasting us interest rates and business cycle with a nonlinear regime switching var model. Journal of Forecasting, 37(1), 1-15. doi: 10.1002/for.2458.
- Ocal, N., & Osborn, D. R. (2000). Business cycle non-linearities in uk consumption and production. Journal of Applied Econometrics, 15(1), 27-43. doi: 10.1002/(sici)1099-1255(200001/02)15:1<27::Aid-jae552>3.0.Co;2-f.
- Owyang, M. T., Piger, J., & Wall, H. J. (2005). Business cycle phases in us states. Review of Economics and Statistics, 87(4), 604-616. doi: 10.1162/003465305775098198.
- Owyang, M. T., Rapach, D. E., & Wall, H. J. (2009). States and the business cycle. Journal of Urban Economics, 65(2), 181-194. doi: 10.1016/j.jue.2008.11.001.
- Padilla, A., & Quintero Otero, J. D. (2022). Regional business cycles in emerging economies: A review of the literature. International Journal of Emerging Markets. Advance online publication. doi: 10.1108/ijoem-09-2021-1484.
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J.M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M. , Li, T., Loder, E. W. , Mayo-Wilson, E., McDonald, S., McGuinness, L. A. , Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A. , Whiting, P., & Moher, D. (2021). The Prisma 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg, 88, 105906. doi: 10.1016/j.ijsu.2021.105906.
- Pandey, R., Patnaik, I., & Shah, A. (2017). Dating business cycles in India. Indian Growth and Development Review, 10(1), 32-61. doi: 10.1108/igdr-02-2017-0013.
- Pesaran, M. H., & Potter, S. M. (1997). A floor and ceiling model of us output. Journal of Economic Dynamics & Control, 21(4-5), 661-695. doi: 10.1016/s0165-1889(96)00002-4.
- Pichler, P. (2011). Solving the multi-country real business cycle model using a monomial rule Galerkin method. Journal of Economic Dynamics & Control, 35(2), 240-251. doi: 10.1016/j.jedc.2010.09.009.
- Proano, C. R. (2017). Detecting and predicting economic accelerations, recessions, and normal growth periods in real-time. Journal of Forecasting, 36(1), 26-42. doi: 10.1002/for.2412.
- Ramajo, J., Marquez, M. A., & Hewings, G. J. D. (2017). Spatiotemporal analysis of regional systems: A multiregional spatial vector autoregressive model for Spain. International Regional Science Review, 40(1), 75-96. doi: 10.1177/0160017615571586.
- Ravn, M. O., & Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of observations. Review of Economics and Statistics, 84(2), 371-376. doi: 10.1162/003465302317411604.
- Restrepo-Ochoa, S. I., & Vazquez, J. (2004). Cyclical features of the Ozawa-lucas endogenous growth model. Economic Modelling, 21(2), 285-322. doi: 10.1016/s0264-9993(03)00016-6.
- Sarantis, N. (1999). Modeling non-linearities in real effective exchange rates. Journal of International Money and Finance, 18(1), 27-45. doi: 10.1016/s0261-5606(98)00045-x.
- Sargent, T. J., & Sims, C. A. (1977). Business cycle modeling without pretending to have too much a priori economic theory. New methods in business cycle research, 1, 145-168.
- Schirwitz, B. (2009). A comprehensive German business cycle chronology. Empirical Economics, 37(2), 287-301. doi: 10.1007/s00181-008-0233-y.
- Siliverstovs, B. (2019). Assessing nowcast accuracy of us GDP growth in real time: The role of booms and busts. Empirical Economics, 58(1), 7-27. doi: 10.1007/s00181-019-01704-6.
- Simkins, S. (1995). Forecasting with vector autoregressive (var) models subject to business cycle restrictions. International Journal of Forecasting, 11(4), 569-583. doi: 10.1016/0169-2070(95)00616-8.
- Simkins, S. P. (1994). Do real business-cycle models really exhibit business-cycle behavior. Journal of Monetary Economics, 33(2), 381-404. doi: 10.1016/0304-3932(94)90007-8.
- Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1-48. doi: 10.2307/1912017.
- Skalin, J., & Terasvirta, T. (1999). Another look at Swedish business cycles, 1861-1988. Journal of Applied Econometrics, 14(4), 359-378. doi: 10.1002/(sici)1099-1255 (199907/08)14:4<359::Aid-jae517>3.0.Co;2-1.
- Smets, F., & Wouters, R. (2003). An estimated dynamic stochastic general equilibrium model of the Euro area. Journal of the European Economic Association, 1(5), 1123-1175. doi: 10.1162/154247603770383415.
- Smets, F., & Wouters, R. (2007). Shocks and frictions in us business cycles: A Bayesian DSGE approach. American Economic Review, 97(3), 586-606. doi: 10.1257/aer.97.3.586.
- Solow, R. M. (1956). A contribution to the theory of economic-growth. Quarterly Journal of Economics, 70(1), 65-94. doi: 10.2307/1884513.
- Stanisic, N. (2013). Convergence between the business cycles of Central and Eastern European countries and the euro area. Baltic Journal of Economics, 13(1), 63-74. doi: 10.1080/1406099x.2013.10840526.
- Stock, J. H., & Watson, M. W. (1989). New indexes of coincident and leading economic indicators. NBER Macroeconomics Annual, 4, 351-394. doi: 10.2307/3584985.
- Terasvirta, T., & Anderson, H. M. (1992). Characterizing nonlinearities in business cycles using smooth transition autoregressive models. Journal of Applied Econometrics, 7, S119-S136. doi: 10.1002/jae.3950070509.
- Tian, R., & Shen, G. (2019). Predictive power of Markovian models: Evidence from us recession forecasting. Journal of Forecasting, 38(6), 525-551. doi: 10.1002/for.2579.
- Van Dijk, D., & Franses, P. H. (1999). Modeling multiple regimes in the business cycle. Macroeconomic Dynamics, 3(3), 311-340. doi: 10.1017/s136510059901202x.
- Wang, X., Xu, Z., Wang, X., & Skare, M. (2022). A review of inflation from 1906 to 2022: A comprehensive analysis of inflation studies from a global perspective. Oeconomia Copernicana, 13(3), 595-631. doi: 10.24136/oc.2022.018.
- Watson, M. W. (1993). Measures of fit for calibrated models. Journal of Political Economy, 101(6), 1011-1041. doi: 10.1086/261913.
- Yogo, M. (2008). Measuring business cycles: A wavelet analysis of economic time series. Economics Letters, 100(2), 208-212. doi: 10.1016/j.econlet.2008.01.008.
- Zhang, L. (2017). Modeling the Phillips curve in China: A nonlinear perspective. Macroeconomic Dynamics, 21(2), 439-461. doi: 10.1017/s1365100515000577.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171678253