PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 14 | nr 4 | 1059--1095
Tytuł artykułu

Going Green with Artificial Intelligence : The Path of Technological Change Towards the Renewable Energy Transition

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research background: The twin pressures of economic downturn and climate change faced by countries around the world have become more pronounced over the past decade. A renewable energy transition is believed to play a central role in mitigating the economic-climate paradox. While the architectural and computational power of artificial intelligence is particularly well suited to address the challenges of massive data processing and demand forecasting during a renewable energy transition, there is very scant empirical assessment that takes a social science perspective and explores the effects of AI development on the energy transition.
Purpose of the article: This paper aims to answer two key questions: One is, how does AI software development promote or inhibit the shift of energy consumption towards renewables? The other is, under what policy interventions does AI software development have a more positive effect on promoting renewable energy consumption?
Methods: We employ a dataset of 62 economies covering the period 2011-2020 to analyze the impact of AI software development on the energy transition, where possible confounders, including political and economic characteristics and time-invariant elements, are controlled using fixed-effects estimation along with specified covariates.
Findings & value added: AI software development can promote the energy transition towards renewables. There is suggestive evidence that the core mechanism linking such a positive relationship tends to lie in improving innovation performance in environmental monitoring rather than in green computing. Government support for R&D in renewable energy technologies is found to be significantly beneficial for harnessing the positive impact of AI software development on the energy transition. Compared to non-market-based environmental policies, market-based environmental policies have a more significant positive moderating effect on the relationship between AI software development and energy transition. (original abstract)
Rocznik
Tom
14
Numer
Strony
1059--1095
Opis fizyczny
Twórcy
autor
  • Xi'an Jiaotong Univeristy, China
autor
  • Xi'an Jiaotong Univeristy, China
  • Shih Chien University, Taiwan
Bibliografia
  • Acemoglu, D., & Restrepo, P. (2018). Artificial intelligence, automation and work. NEBR Working Paper, 24196. doi: 10.3386/w24196.
  • Al-Othman, A., Tawalbeh, M., Martis, R., Dhou, S., Orhan, M., Qasim, M., & Ghani Olabi, A. (2022). Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects. Energy Conversion and Management, 253(1), 115154. doi: 10.1016/j.enconman.2021.115154.
  • Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., Flynn, D., Elizondo-Gonzalez, S., & Wattam, S. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews, 130, 109899. doi: 10.1016/j.rser.2020.109899.
  • Baranes, E., Jacqmin, J., & Poudou, J. (2017). Non-renewable and intermittent renewable energy sources: Friends and foes? Energy Policy, 111, 58-67. doi: 10.1016/j.enpol.2017.09.018.
  • Berg, A., Buffie, E. F., & Zanna, L. (2018). Should we fear the robot revolution? (the correct answer is yes). Journal of Monetary Economics, 97, 117-148. doi: 10.1016/j.jmoneco.2018.05.014.
  • Bergh, J. C. J. M. (2009). The GDP paradox. Journal of Economic Psychology, 30(2), 117-135. doi: 10.1016/j.joep.2008.12.001.
  • Biber, E. (2013). The challenge of collecting and using environmental monitoring data. Ecology and society, 18(4), 895-908. doi: 10.5751/ES-06117-180468.
  • Bielecki, A., Ernst, S., Skrodzka, W., & Wojnicki, I. (2020). The externalities of energy production in the context of development of clean energy generation. Environmental Science and Pollution Research International, 27(11), 11506-11530. doi: 10.1007/s11356-020-07625-7.
  • Brodny, J., Tutak, M., & Saki, S. A. (2020). Forecasting the structure of energy production from renewable energy sources and biofuels in Poland. Energies, 13(10), 2539. doi: 10.3390/en13102539.
  • Cheng, L., & Yu, T. (2019). A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. International Journal of Energy Research, 43(6), 1928-1973. doi: 10.1002/er.4333.
  • Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2021). A definition, benchmark and database of AI for social good initiatives. Nature Machine Intelligence, 3(2), 111-115. doi: 10.1038/s42256-021-00296-0.
  • Dauvergne, P. (2022). Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Review of International Political Economy, 29(3), 696-718. doi: 10.1080/09692290.2020.1814381.
  • Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283-314. doi: 10.1016/j.jbusres.2020.08.019.
  • Donis, S., Gómez, J., & Salazar, I. (2023). Economic complexity, property rights and the judicial system as drivers of eco-innovations: An analysis of OECD countries. Technovation, 128, 102868. doi: 10.1016/j.technovation.2023.102868.
  • Donti, P. L., & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747. doi: 10.1146/annurev-environ-020220-061831.
  • Ebert-Uphoff, I., & Hilburn, K. (2023). The outlook for AI weather prediction. Nature, 473-474(619). doi: 10.1038/d41586-023-02084-9.
  • Galaz, V., Centeno, M. A., Callahan, P. W., Causevic, A., Patterson, T., Brass, I., Baum, S., Farber, D., Fischer, J., Garcia, D., McPhearson, T., Jimenez, D., King, B., Larcey, P., & Levy, K. (2021). Artificial intelligence, systemic risks, and sustainability. Technology in Society, 67, 101741. doi: 10.1016/j.techsoc.2021.101741.
  • Gao, L., Hiruta, Y., & Ashina, S. (2020). Promoting renewable energy through willingness to pay for transition to a low carbon society in Japan. Renewable Energy, 162, 818-830. doi: 10.1016/j.renene.2020.08.049.
  • Geels, F. W. (2013). The impact of the financial-economic crisis on sustainability transitions: Financial investment, governance and public discourse. Environmental Innovation and Societal Transitions, 6, 67-95. doi: 10.1016/j.eist.2012.11.004.
  • Goh, K. H., Wang, L., Yeow, A., Poh, H., Li, K., Yeow, J., & Tan, G. (2021). Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat Commun, 12(1), 711. doi: 10.1038/s41467-021-20910-4.
  • Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. International Journal of Management Education, 18(1), 100330. doi: 10.1016/j.ijme.2019.100330.
  • Grubler, A. (1996). Time for a change: On the patterns of diffusion of innovation. Daedalus, 125(3), 19-42.
  • Hajjaji, Y., Boulila, W., Farah, I. R., Romdhani, I., & Hussain, A. (2021). Big data and IoT-based applications in smart environments: A systematic review. Computer Science Review, 39, 100318. doi: 10.1016/j.cosrev.2020.100318.
  • Haščiči, I., & Migottoi, M. (2015). Measuring environmental innovation using patent data. OECD Environment Working Papers, 89. doi: 10.1787/19970900.
  • Hermann, E. (2022). Leveraging artificial intelligence in marketing for social goodan ethical perspective. Journal of Business Ethics, 179(1), 43-61. doi: 10.1007/s10551-021-04843-y.
  • Hernandez-Matheus, A., Löschenbrand, M., Berg, K., Fuchs, I., Aragüés-Peñalba, M., Bullich-Massagué, E., & Sumper, A. (2022). A systematic review of machine learning techniques related to local energy communities. Renewable and Sustainable Energy Reviews, 170, 112651. doi: 10.1016/j.rser.2022.112651.
  • Hino, M., Benami, E., & Brooks, N. (2018). Machine learning for environmental monitoring. Nature Sustainability, 1, 583-588. doi: 10.1038/s41893-018-0142-9.
  • Huang, L., & Zou, Y. (2020). How to promote energy transition in China: From the perspectives of interregional relocation and environmental regulation. Energy Economics, 92, 104996. doi: 10.1016/j.eneco.2020.104996.
  • Huang, X., Liu, W., Zhang, Z., & Zhao, Z. (2022). Intensive judicial oversight and corporate green innovations: Evidence from a quasi-natural experiment in China. China Economic Review, 74, 101799. doi: 10.1016/j.chieco.2022.101799.
  • Huang, Z., Liao, G., & Li, Z. (2019). Loaning scale and government subsidy for promoting green innovation. Technological Forecasting and Social Change, 144, 148-156. doi: 10.1016/j.techfore.2019.04.023.
  • Inglesi-Lotz, R. (2016). The impact of renewable energy consumption to economic growth: A panel data application. Energy Economics, 53, 58-63. doi: 10.1016/j.eneco.2015.01.003.
  • Jha, S. K., Bilalovic, J., Jha, A., Patel, N., & Zhang, H. (2017). Renewable energy: Present research and future scope of artificial intelligence. Renewable and Sustainable Energy Reviews, 77, 297-317. doi: 10.1016/j.rser.2017.04.018.
  • Kopka, A., & Grashof, N. (2022). Artificial intelligence: Catalyst or barrier on the path to sustainability? Technological Forecasting and Social Change, 175, 121318. doi: 10.1016/j.techfore.2021.121318.
  • Korinek, A., & Stiglitz, J. E. (2017). Artificial intelligence and its implications for income distribution and unemployment. NEBR Working Paper, 24174. doi: 10.3386/w24174.
  • Kumari, A., Gupta, R., Tanwar, S., & Kumar, N. (2020). Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions. Journal of Parallel and Distributed Computing, 143, 148-166. doi: 10.1016/j.jpdc.2020.05.004.
  • Leal Filho, W., Wall, T., Rui Mucova, S. A., Nagy, G. J., Balogun, A., Luetz, J. M., Ng, A. W., Kovaleva, M., Safiul Azam, F. M., Alves, F., Guevara, Z., Matandirotya, N. R., Skouloudis, A., Tzachor, A., Malakar, K., & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662. doi: 10.1016/j.techfore.2022.121662.
  • Lokshin, B., Belderbos, R., & Carree, M. (2008). The productivity effects of internal and external R&D: Evidence from a dynamic panel data model. Oxford Bulletin of Economics and Statistics, 70(3), 399-413. doi: 10.1111/j.1468-0084.2008.00503.x.
  • Long, H., Feng, G. F., Gong, Q., & Chang, C. P. (2023). ESG performance and green innovation: An investigation based on quantile regression. Business Strategy and the Environment, 32(7), 5102-5118. doi: 10.1002/bse.3410.
  • Luo, S., Yimamu, N., Li, Y., Wu, H., Irfan, M., & Hao, Y. (2023). Digitalization and sustainable development: How could digital economy development improve green innovation in China? Business Strategy and the Environment, 32(4), 1847-1871. doi: 10.1002/bse.3223.
  • Luttmer, E. G. J. (2012). Technology diffusion and growth. Journal of Economic Theory, 147(2), 602-622. doi: 10.1016/j.jet.2011.02.003.
  • Mason, K., Duggan, J., & Howley, E. (2018). Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks. Energy, 155, 705-720. doi: 10.1016/j.energy.2018.04.192.
  • Mildenberger, M., & Leiserowitz, A. (2017). Public opinion on climate change: Is there an economy-environment tradeoff? Environmental Politics, 26(5), 801-824. doi: 10.1080/09644016.2017.1322275.
  • Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: A new era has begun. Small Business Economics, 55(3), 529-539. doi: 10.1007/s11187-019-00202-4.
  • Olabi, A. G. (2017). Renewable energy and energy storage systems. Energy, 136(1), 1-6. doi: 10.1016/j.energy.2017.07.054.
  • Owen, A. D. (2006). Renewable energy: Externality costs as market barriers. Energy Policy, 34(5), 632-642. doi: 10.1016/j.enpol.2005.11.017.
  • Papke, L. E., & Wooldridge, J. M. (1996). Econometric methods for fractional response variables with an application to 401 (k) plan participation rates. Journal of Applied Econometrics, 11(6), 619-632. doi: 10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1.
  • Papke, L. E., & Wooldridge, J. M. (2008). Panel data methods for fractional response variables with an application to test pass rates. Journal of Econometrics, 145(1), 121-133. doi: 10.1016/j.jeconom.2008.05.009.
  • Paschen, U., Pitt, C., & Kietzmann, J. (2020). Artificial intelligence: Building blocks and an innovation typology. Business Horizons, 63(2), 147-155. doi: 10.1016/j.bushor.2019.10.004.
  • Piselli, C., Salvadori, G., Diciotti, L., Fantozzi, F., & Pisello, A. L. (2021). Assessing users' willingness-to-engagement towards Net Zero Energy communities in Ita- ly. Renewable and Sustainable Energy Reviews, 152, 111627. doi: 10.1016/j.rser.2021.111627.
  • Roach, B., & Walker, T. R. (2017). Aquatic monitoring programs conducted during environmental impact assessments in Canada: Preliminary assessment before and after weakened environmental regulation. Environ Monit Assess, 189(3), 109. doi: 10.1007/s10661-017-5823-8.
  • Rusch, M., Schöggl, J., & Baumgartner, R. J. (2022). Application of digital technolo- gies for sustainable product management in a circular economy: A review. Business Strategy and the Environment, 32(3), 1159-1174. doi: 10.1002/bse.3099.
  • Sartori, L., & Theodorou, A. (2022). A sociotechnical perspective for the future of AI: Narratives, inequalities, and human control. Ethics and Information Technology, 24(1). doi: 10.1007/s10676-022-09624-3.
  • Scruggs, L., & Benegal, S. (2012). Declining public concern about climate change: Can we blame the great recession? Global Environmental Change, 22(2), 505-515. doi: 10.1016/j.gloenvcha.2012.01.002.
  • Shin, W., Han, J., & Rhee, W. (2021). AI-assistance for predictive maintenance of renewable energy systems. Energy, 221, 119775. doi: 10.1016/j.energy.2021.119775.
  • Stavins, R. N. (2010). Market-based environmental policies. In P. Portney & R. N. Stavins (Eds.). Public policies for environmental protection (pp. 31-76). Routledge.
  • Truby, J. (2020). Governing artificial intelligence to benefit the UN Sustainable Development Goals. Sustainable Development, 28(4), 946-959 doi: 10.1002/sd.2048.
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 210-233. doi: 10.1038/s41467-019-14108-y.
  • Wang, Y., Chi, P., Nie, R., Ma, X., Wu, W., & Guo, B. (2023). A novel fractional discrete grey model with variable weight buffer operator and its applications in renewable energy prediction. Soft Computing, 27(14), 9321-9345. doi: 10.1007/s00500-023-08203-y.
  • Wehn, U., & Uta Almomani, A. (2019). Incentives and barriers for participation in community-based environmental monitoring and information systems: A critical analysis and integration of the literature. Environmental Science & Policy, 101, 341-357. doi: 10.1016/j.envsci.2019.09.002.
  • Wen, J., Yin, H., Jang, C., Uchida, H., & Chang, C. (2023). Does corruption hurt green innovation? Yes - Global evidence from cross-validation. Technological Forecasting and Social Change, 188, 122313. doi: 10.1016/j.techfore.2022.122313.
  • Wilson, C., & van der Velden, M. (2022). Sustainable AI: An integrated model to guide public sector decision-making. Technology in Society, 68, 101926. doi: 10.1016/j.techsoc.2022.101926.
  • Xia, W., Apergis, N., Bashir, M. F., Ghosh, S., Doğan, B., & Shahzad, U. (2022). Investigating the role of globalization, and energy consumption for environmental externalities: Empirical evidence from developed and developing economies. Renewable Energy, 183, 219-228. doi: 10.1016/j.renene.2021.10.084.
  • Xiao, X., & Li, X. (2023). A novel compositional data model for predicting the energy consumption structures of Europe, Japan, and China. Environment, Development and Sustainability, 25(10), 11673-11698. doi: 10.1007/s10668-022-02547-5.
  • Yazdanpanah, M., Komendantova, N., & Ardestani, R. S. (2015). Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through sociopsychological model. Renewable and Sustainable Energy Reviews, 45, 565-573. doi: 10.1016/j.rser.2015.02.002.
  • Yi, S., & Xiao-li, A. (2018). Application of threshold regression analysis to study the impact of regional technological innovation level on sustainable development. Renewable and Sustainable Energy Reviews, 89, 27-32. doi: 10.1016/j.rser.2018.03.005.
  • Yin, H., Wen, J., & Chang, C. (2022). Science-technology intermediary and innovation in China: Evidence from State Administration for Market Regulation, 2000- 2019. Technology in Society, 68, 101864. doi: 10.1016/j.techsoc.2022.101864.
  • York, R. (2012). Asymmetric effects of economic growth and decline on CO2 emissions. Nature Climate Change, 2, 762-764 doi: 10.1038/nclimate1699.
  • Zhao, Y., Li, J., & Yu, L. (2017). A deep learning ensemble approach for crude oil price forecasting. Energy Economics, 66, 9-16 doi: 10.1016/j.eneco.2017.05.023.
  • Zheng, M., Feng, G. F., Jiang, R. A., & Chang, C. P. (2023). Does environmental, social, and governance performance move together with corporate green innovation in China? Business Strategy and the Environment, 32(4), 1670-1679. doi: 10.1002/bse.3211.
  • Zhou, K., Luo, H., Ye, D., & Tao, Y. (2022). The power of anti-corruption in environmental innovation: Evidence from a quasi-natural experiment in China. Technological Forecasting and Social Change, 182, 121831. doi: 10.1016/j.techfore.2022.121831.
  • Zhuang, Y., Wu, F., Chen, C., & Pan, Y. (2017). Challenges and opportunities: From big data to knowledge in AI 2.0. Frontiers of Information Technology & Electronic Engineering, 18, 3-14. doi: 10.1631/FITEE.1601883.
  • Zou, Y., & Wang, M. (2024). Does environmental regulation improve energy transition performance in China? Environmental Impact Assessment Review, 104, 107335. doi: 10.1016/j.eiar.2023.107335.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171681062

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.