PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 14 | nr 4 | 1097--1138
Tytuł artykułu

Artificial Intelligence-Based Predictive Maintenance, Time-Sensitive Networking, and Big Data-Driven Algorithmic Decision-Making in The Economics of Industrial Internet of Things

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research background: The article explores the integration of Artificial Intelligence (AI) in predictive maintenance (PM) within Industrial Internet of Things (IIoT) context. It addresses the increasing importance of leveraging advanced technologies to enhance maintenance practices in industrial settings.
Purpose of the article: The primary objective of the article is to investigate and demonstrate the application of AI-driven PM in the IIoT. The authors aim to shed light on the potential benefits and implications of incorporating AI into maintenance strategies within industrial environments.
Methods: The article employs a research methodology focused on the practical implementation of AI algorithms for PM. It involves the analysis of data from sensors and other sources within the IIoT ecosystem to present predictive models. The methods used in the study contribute to understanding the feasibility and effectiveness of AI-driven PM solutions.
Findings & value added: The article presents significant findings regarding the impact of AI-driven PM on industrial operations. It discusses how the implementation of AI technologies contributes to increased efficiency. The added value of the research lies in providing insights into the transformative potential of AI within the IIoT for optimizing maintenance practices and improving overall industrial performance. (original abstract)
Rocznik
Tom
14
Numer
Strony
1097--1138
Opis fizyczny
Twórcy
  • University of Zilina, Slovakia
autor
  • Bucharest University of Economic Studies, Romania
autor
  • University of Zilina, Slovakia
  • Dimitrie Cantemir Christian University, Romania
Bibliografia
  • Adame, T., Carrascosa-Zamacois, M., & Bellalta, B. (2021). Time-sensitive networking in IEEE 802.11 be: On the way to low-latency WiFi 7. Sensors, 21(15), 4954. doi: 10.3390/s21154954.
  • Ali, Z. A., Abduljabbar, Z. H., Taher, H. A., Sallow, A. B., & Almufti, S. M. (2023). Exploring the power of eXtreme gradient boosting algorithm in machine learning: A review. Academic Journal of Nawroz University, 12(2), 320-334. doi: 10.25007/ajnu.v12n2a1612.
  • Alrumaih, T. N., Alenazi, M. J., AlSowaygh, N. A., Humayed, A. A., & Alablani, I. A. (2023). Cyber resilience in industrial networks: A state of the art, challenges, and future directions. Journal of King Saud University-Computer and Information Sciences, 35(9), 101781. doi: 10.1016/j.jksuci.2023.101781.
  • Al-Saedi, I. R., Mohammed, F. M., & Obayes, S. S. (2017). CNC machine based on embedded wireless and Internet of Things for workshop development. In 2017 International conference on control, automation and diagnosis (ICCAD) (pp. 439-444). IEEE. doi: 10.1109/CADIAG.2017.8075699.
  • Ammar, M., Haleem, A., Javaid, M., Bahl, S., Garg, S. B., Shamoon, A., & Garg, J. (2022). Significant applications of smart materials and Internet of Things (IoT) in the automotive industry. Materials Today: Proceedings, 68, 1542-1549. doi: 10.1016/j.matpr.2022.07.180.
  • Aslam Zainudeen, N., & Labib, A. (2011). Practical application of the decision making grid (DMG). Journal of Quality in Maintenance Engineering, 17(2), 138-149. doi: 10.1108/13552511111134574.
  • Bagheri, S., & Dijkstra, J (2023). Capabilities for data analytics in Industrial Internet of Things (IIOT). ECIS 2023 Research Papers, 416. Retrieved from https://aisel.aisnet.org/ecis2023_rp/416.
  • Bautista, E., Sukhija, N., & Deng, S. (2022, September). Shasta log aggregation, monitoring and alerting in HPC environments with Grafana Loki and ServiceNow. In 2022 IEEE international conference on cluster computing (CLUSTER) (pp. 602-610). IEEE. doi: 10.1109/CLUSTER51413.2022.00079.
  • Boulesteix, A. L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6), 493-507. doi: 10.1002/widm.1072.
  • Chahed, H., Usman, M., Chatterjee, A., Bayram, F., Chaudhary, R., Brunstrom, A., Taheri, J., Bestoun, S. A., & Kassler, A. (2023). AIDA - A holistic AI-driven net- working and processing framework for industrial IoT applications. Internet of Things, 22, 100805. doi: 10.1016/j.iot.2023.100805.
  • Chakraborty, M., & Kundan, A. P. (2021). Grafana. In Monitoring cloud-native applications: Lead agile operations confidently using open source software (pp. 187-240). Berkeley, CA: Apress. doi: 10.1007/978-1-4842-6888-9.
  • Christou, I. T., Kefalakis, N., Zalonis, A., Soldatos, J., & Bröchler, R. (2020). End-to- end industrial IoT platform for actionable predictive maintenance. IFAC-PapersOnLine, 53(3), 173-178. doi: 10.1016/j.ifacol.2020.11.028.
  • Ciancio, V., Homri, L., Dantan, J. Y., Siadat, A., & Convain, P. (2022). Development of a flexible predictive maintenance system in the context of Industry 4.0. IFAC-PapersOnLine, 55(10), 1576-1581. doi: 10.1016/j.ifacol.2022.09.615.
  • Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0. Sustainability, 12(19), 8211. doi: 10.3390/su12198211.
  • Click, C., Malohlava, M., Candel, A., Roark, H., & Parmar, V. (2017). Gradient boosting machine with H2O. Mountain View: H2O.ai.
  • Devi, M., Dhaya, R., Kanthavel, R., Algarni, F., & Dixikha, P. (2020). Data science for Internet of Things (IoT). In Second international conference on computer networks and communication technologies: ICCNCT 2019 (pp. 60-70). Springer International Publishing. doi: 10.1007/978-3-030-37051-0_7.
  • Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management (JIEM), 15(1), 31-57. doi: 10.3926/jiem.3597.
  • Dubey, G. P., Stalin, S., Alqahtani, O., Alasiry, A., Sharma, M., Aleryani, A., Shukla, P. K., & Alouane, M. T. H. (2023). Optimal path selection using reinforcement learning based ant colony optimization algorithm in IoT-based wireless sensor networks with 5G technology. Computer Communications, 212, 377-389. doi: 10.1016/j. comcom.2023.09.015
  • Fecarotti, C., Andrews, J., & Pesenti, R. (2021). A mathematical programming model to select maintenance strategies in railway networks. Reliability Engineering & System Safety, 216, 107940. doi: 10.1016/j.ress.2021.107940.
  • Ferreira, W., Cavalcante, C., & Do Van, P. (2021). Deep reinforcement learning-based maintenance decision-making for a steel production line. In B. Castanier, M. Cepin, D. Bigaud & C. Berenguer (Eds.). Proceedings of the 31st European safety and reliability conference, ESREL 2021. Singapore: Research Publishing. doi: 10.3850/ 978-981-18-2016-8_600-cd.
  • García, S. G., & García, M. G. (2019). Industry 4.0 implications in production and maintenance management: An overview. Procedia Manufacturing, 41, 415-422. doi: 10.1016/j.promfg.2019.09.027.
  • Gerhard, T., Kobzan, T., Blöcher, I., & Hendel, M. (2019). Software-defined flow reservation: Configuring IEEE 802.1 Q time-sensitive networks by the use of software-defined networking. In 2019 24th IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 216-223). IEEE. doi: 10.1109/ETFA.2019.8869040.
  • Gerum, P. C. L., Altay, A., & Baykal-Gürsoy, M. (2019). Data-driven predictive maintenance scheduling policies for railways. Transportation Research Part C: Emerging Technologies, 107, 137-154. doi: 10.1016/j.trc.2019.07.020.
  • Gokhale, S., Poosarla, R., Tikar, S., Gunjawate, S., Hajare, A., Deshpande, S., Gupta, S., & Karve, K. (2021). Creating Helm Charts to ease deployment of enterprise application and its related services in Kubernetes. In 2021 international conference on computing, communication and green engineering (CCGE) (pp. 1-5). IEEE. doi: 10.1109/CCGE50943.2021.9776450.
  • Gugueoth, V., Safavat, S., & Shetty, S. (2023). Security of Internet of Things (IoT) using federated learning and deep learning-Recent advancements, issues and prospects. ICT Express, 9, 941-960. doi: 10.1016/j.icte.2023.03.006.
  • Gundall, M., Huber, C., & Melnyk, S. (2021). Integration of IEEE 802.1 AS-based time synchronization in IEEE 802.11 as an enabler for novel industrial use cases. arXiv preprint arXiv:2101.02434. doi: 10.48550/arXiv.2101.02434.
  • Gupta, V., Mitra, R., Koenig, F., Kumar, M., & Tiwari, M. K. (2023). Predictive maintenance of baggage handling conveyors using IoT. Computers & Industrial Engineering, 177, 109033. doi: 10.1016/j.cie.2023.109033.
  • Hien, N. N., Lasa, G., Iriarte, I., & Unamuno, G. (2022). An overview of Industry 4.0 applications for advanced maintenance services. Procedia Computer Science, 200, 803-810. doi: 10.1016/j.procs.2022.01.277.
  • Hurtado, J., Salvati, D., Semola, R., Bosio, M., & Lomonaco, V. (2023). Continual learning for predictive maintenance: Overview and challenges. Intelligent Systems with Applications, 19, 200251. doi: 10.1016/j.iswa.2023.200251.
  • Jurczuk, A., & Florea, A. (2022). Future-oriented digital skills for process design and automation. Human Technology, 18(2), 122-142. doi: 10.14254/1795-6889.2022.18-2.3.
  • Khan, W. Z., Rehman, M. H., Zangoti, H. M., Afzal, M. K., Armi, N., & Salah, K. (2020). Industrial internet of things: Recent advances, enabling technologies and open challenges. Computers & Electrical Engineering, 81, 106522. doi: 10.1016/j.compeleceng.2019.106522.
  • Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39, 261-283. doi: 10.1007/s10462-011-9272-4.
  • Kumar, N., & Kumar, J. (2019). Efficiency 4.0 for Industry 4.0. Human Technology, 15(1), 55-78. doi: 10.17011/ht/urn.201902201608.
  • Li, C., Chen, Y., & Shang, Y. (2022). A review of industrial big data for decision making in intelligent manufacturing. Engineering Science and Technology, an International Journal, 29, 101021. doi: 10.1016/j.jestch.2021.06.001.
  • Maalouf, M. (2011). Logistic regression in data analysis: An overview. International Journal of Data Analysis Techniques and Strategies, 3(3), 281-299. doi: 10.1504/IJDATS.2011.041335.
  • Miranda Filho, R., Lacerda, A., & Pappa, G. L. (2020). Explaining symbolic regression predictions. In 2020 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE. doi: 10.1109/CEC48606.2020.9185683.
  • Nazemi Absardi, Z., & Javidan, R. (2023). A QoE-driven SDN traffic management for IoT-enabled surveillance systems using deep learning based on edge cloud computing. Journal of Supercomputing, 79, 19168-19193. doi: 10.1007/s11227-023-05412-y.
  • Nguyen Ngoc, H., Lasa, G., & Iriarte, I. (2022). An overview of Industry 4.0 applica- tions for advanced maintenance services. Procedia Computer Science, 200(10), 803-810. doi: 10.1016/j.procs.2022.01.277
  • Patil, S., & Patil, S. (2021). Linear with polynomial regression: Overview. International Journal of Applied Research, 7, 273-275. doi: 10.22271/allresearch.2021.v7.i8d.8876.
  • Pinciroli, L., Baraldi, P., & Zio, E. (2023). Maintenance optimization in Industry 4.0. Reliability Engineering & System Safety, 234, 109204. doi: 10.1016/j.ress.2023.109204.
  • Pinciroli, L., Baraldi, P., Ballabio, G., Compare, M., & Zio, E. (2021). Deep rein- forcement learning based on proximal policy optimization for the maintenance of a wind farm with multiple crews. Energies, 14(20), 6743. doi: 10.3390/en14206743.
  • Roy, A., & Chakraborty, S. (2023). Support vector machine in structural reliability analysis: A review. Reliability Engineering & System Safety, 233, 109126. doi: 10.1016/j.ress.2023.109126.
  • Shvets, Y., & Hanák, T. (2023). Use of the Internet of Things in the construction industry and facility management: Usage examples overview. Procedia Computer Science, 219, 1670-1677. doi: 10.1016/j.procs.2023.01.460.
  • Siraskar, R., Kumar, S., Patil, S., Bongale, A., & Kotecha, K. (2023). Reinforcement learning for predictive maintenance: A systematic technical review. Artificial Intelligence Review, 56, 12885-12947. doi: 10.1007/s10462-023-10468-6.
  • Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of Things for smart factories in Industry 4.0, a review. Internet of Things and Cyber-Physical Systems, 3, 192-204. doi: 10.1016/j.iotcps.2023.04.006.
  • Trifonov, H., & Heffernan, D. (2023). OPC UA TSN: A next-generation network for Industry 4.0 and IIoT. International Journal of Pervasive Computing and Communications, 19(3), 386-411. doi: 10.1108IJPCC-07-2021-0160
  • Turnbull, J. (2018). Monitoring with Prometheus. Turnbull Press.
  • Usman, M., Ferlin, S., Brunstrom, A., & Taheri, J. (2022). A survey on observability of distributed edge & container-based microservices. IEEE Access, 10, 86904- 86919. doi: 10.1109/ACCESS.2022.3193102.
  • Usman, M., Risdianto, A. C., Han, J., & Kim, J. (2019). Interactive visualization of SDN-enabled multisite cloud playgrounds leveraging smartx multiview visibility framework. Computer Journal, 62(6), 838-854. doi: 10.1093/comjnl/bxy103.
  • Viera-Martin, E., Gómez-Aguilar, J. F., Solís-Pérez, J. E., Hernández-Pérez, J. A., & Escobar-Jiménez, R. F. (2022). Artificial neural networks: A practical review of applications involving fractional calculus. European Physical Journal Special Topics, 231(10), 2059-2095. doi: 10.1140/epjs/s11734-022-00455-3.
  • Wolfartsberger, J., Zenisek, J., & Wild, N. (2020). Data-driven maintenance: Combining predictive maintenance and mixed reality-supported remote assistance. Procedia Manufacturing, 45, 307-312. doi: 10.1016/j.promfg.2020.04.022.
  • Zezulka, F., Marcon, P., Bradac, Z., Arm, J., & Benesl, T. (2019). Time-sensitive net-working as the communication future of industry 4.0. IFAC-PapersOnLine, 52(27), 133-138. doi: 10.1016/j.ifacol.2019.12.745.
  • Zhang, J., Liu, C., Li, X., Zhen, H. L., Yuan, M., Li, Y., & Yan, J. (2023). A survey for solving mixed integer programming via machine learning. Neurocomputing, 519, 205-217. doi: 10.1016/j.neucom.2022.11.024.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171681436

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.