PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | nr 49 | 39--48
Tytuł artykułu

Optical roughness calculation for material structural analysis of energy structure applications under dc plasma processes

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface qualities make aluminium a low-DC plasma interaction candidate. Aluminum for energy system structure building is studied experimentally, with observations obtained. Aluminum is cheap and frequently utilized in aerospace applications. The selection of materials for new applications of thermonuclear fusion energy, such as Tokamak reactor walls and fusion-based spaceship thrust structures, is important to decide in the design phase. In this study, an experimental setup application is created with low DC-type He plasma ions processed on aluminium pellet surfaces. The physical changes of the aluminium pellet material as an example of an energy structure surface are analysed under a scanned array microscope and 3D surface plots to detect optical roughness attributes.(original abstract)
Czasopismo
Rocznik
Numer
Strony
39--48
Opis fizyczny
Twórcy
autor
  • School of Natural and Applied Sciences, Ankara Yıldırım Beyazit University, Ankara, Türkiye
Bibliografia
  • Xometr Inc., Aluminum: History, Characteristics, Types, Properties, and Applications, March 2023, web site access: https://www.xometry.com/resources/materials/what-is-aluminum/
  • Pirizadhejrandoost S., Bakhshzad M., Ahmadi E., Moradshahi M., The Corrosion Behavior of Carburized Aluminium Using DC Plasma, Hindawi Publishing Corporation, "Journal of Metallurgy", Volume 20212, ref: https://www.researchgate.net/publication/283484159_DC_mode_plasma_electrolytic_oxidation_of_aluminum_alloys_for_corrosion_protection
  • Pahsa A., Modelling Plasma Material Interactions in Spacecraft Magnetic Fusion Devices, 9th International Conference on Recent Advances in Space Technologies (RAST), 2019, DOI:10.1109/RAST.2019.8767780
  • Kotov V., 2017, Particle conservation in numerical models of the tokamak plasma edge, Physics Plasma Ph Archive, Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung-Plasmaphysic, Partner of the Trilateral Euregio Cluster, Jülich, Germany, https://doi.org/10.1063/1.4980858
  • Rapp J., Temmerman D. G., Van RooIJ G.J., Emmichoven V. Z. P. A., Kleyn A. W., 2011, Plasma Facing Materials Research For Fuision Reactors At Fom Rijnhuizen, 15th International Conference on Plasma Physics and Applications, "Romania Journal Of Physics", Vol 56, pp 30-35, Romania.
  • Malo M., 2016, Morono A., Hodgson E. R., Plasma Etching to Enhance the Surface Insulating Stability of Aluminumina for Fusion Applications, "Nuclear Materials and Energy", 9, pp 247-250, Elsevier, DOI:10.1016/j.nme.2016.05.008
  • International Atomic Energy Agency, 1985, Lifetime Predictions For The First Wall and Blanket Structure of Fusion Reactors, Proceedings of a Technical Committee Meeting, Karlsruhe, https://doi.org/10.1115/1.3264256
  • Conde L., An Introduction to Langmuir Probe Diagnostics of Plasmas, pp 3, Figure-2 2011, website ref: http://plasmalab.aero.upm.es/~lcl/PlasmaProbes/Probes-2010-2.pdf, Corpus ID: 53622081
  • ASME B46.1:2019, "Surface Texture (Surface Roughness, Waviness, and Lay)", NS-996086, Technical Standards ASME, 2020
  • K. Wojcyzkowski, New Development in Corrosion Testing: Theory, Methods and Standards, AESF Foundation, Plating and Surface Finishing, pp 98, January 2011.
  • IAEA (International Atomic Energy Agency), Kikuchi M., Lackner K., Tran M. Q., Fusion Physics, pp. 20-21, ISBN 978-92-0-130410-0, Vienna, 2012.
  • Freidberg J.P., Mangiarotti F.J., Minervini J., Desgining a Tokamak Fusion Reactor-How Does Plasma Physics Fit In?, pp. 16, June 2015, Plasma Science and Fusion Center, Massachusetts Insitute of Technology, Cambridge MA, https://doi.org/10.1063/1.4923266
  • Miyamoto K., Fundamentals of Plasma Physics and Controlled Fusion, 3rd Edition, 2011, pp: 1-21, web site ref: https://www.nifs.ac.jp/report/NIFS-PROC-88.pdf, DOI10.1088/0029-5515/38/4/701
  • Brams C. M., Scott P. E., Nuclear Fusion-Half a Century of Magnetic Confinement Fusion Research, Bristol 2002, IoP Publishing Ltd, pp 230-258, web site ref: https://library.psfc.mit.edu/catalog/online_pubs/conference%20proceedings/fusion%20energy%20conferences/Nuclear%20Fusion%20(IOP)%20half%20a%20century.pdf, DOI10.1088/0741-3335/44/8/701
  • Chan A. Y., 2016, Herdrich G., Syring C., Development of Inertial Electrostatic Confinement in IRS, SP 2016 3125348, Space Propulsion Conference, Rome, Italy.
  • Jones E. S., Rafelski J., Cold Nuclear Fusion, pp: 66-71, Scientific American, Springer Nature Publishing, 1987, web site ref: https://www.fulviofrisone.com/attachments/article/358/Cold%20Nuclear%20Fusion.pdf, DOI: 10.1038/scientificamerican0787-84
  • IAEA, 2007, Atomic and Plasma Material Interaction Data for Fusion, volume 13, Vienna.
  • L. Rajablou, S.M. Motevalli, F. Fadaei, Study of alpha particle concentration effects as the ash of deuterium-tritium fusion reaction on ignition criteria, "Physica Scripta" 97, 095601, 2022, DOI10.1088/1402-4896/ac831a
  • A. Rene, R. Iglesias, M.A. Cerdeira, Materials to Be Used in Future Magnetic Confinement Fusion Reactors: A Review, "Materials" 15, no. 19: 6591, 2022, https://doi.org/10.3390/ma15196591
  • S.M. Motevalli, N. Dashtban, M. Maleki, Determination of optimum conditions in ITER tokamak by using zero-dimensional model, "Indian Journal of Physics" 94, 1-7, 2020 DOI:10.1007/s12648-020-01857-6
  • Selinger T.S., Schimid K., Hakola A., van der Meiden H., Dejernac R., Tsitrone E., Doerner R., Baldwin M., Nishijima D., Eurofusion Project Workpacage PFC Team, Latest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention, "Nuclear Fusion" 62, International Atomic Energy Agency (2022), ref site: https://iopscience.iop.org/article/10.1088/1741-4326/ac2a6a,DOI10.1088/1741-4326/ac2a6a
  • Schneider CA, Rasband WS, Eliceiri KW, Image Processing and Analysis in Java, National Institutes of Health, 2012, web site access: https://imagej.nih.gov/ij/docs/index.html
  • Pahsa, A, Aydogdu Y., Goktas F. Mathematical Calculation of Material Reliability Using Surface Roughness Feature Based on Plasma Material Interaction Experiment Results, "Eksploatacja i Niezawodność", vol.25, no.3, 1-10, 2023, DOI: 10.17531/ein/169815
  • Centre for Innovation in Mathematics Teaching, 12 Correlation and Regression, Stats_Ch12, pp: 215-242, University of Plymouth, web site access: https://www.cimt.org.uk/projects/mepres/alevel/stats_ch12.pd
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171681866

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.