PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | z. 188 Współczesne zarządzanie = Contemporary management | 221--241
Tytuł artykułu

A New Method of Coronavirus Virion Detection - Innovative Method of Identification Transforming

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: the article presents the result of an attempt to assess the possibility of using scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) to identify silica nanoparticles (SiO2), which, due to the size of individual particles (200 nm), can be used as coronavirus markers in simulation tests.

Methodology: SEM/EDS evaluation was performed using three different media types; namely membrane filters, sponge filters and graphite discs.

Result: SEM/EDS studies, consisting in determining the morphology and grain size of SiO2 markers and X-ray microanalysis of their elemental composition, proved that this technique can be successfully used to identify markers.

Originality: due to their particle size, ease of handling with various types of surfaces, and biological and physicochemical neutrality, silica markers can act as coronavirus substitutes in experimental studies.(original abstract)
Twórcy
  • National Research Institute, Katowice
  • National Research Institute, Katowice
  • National Research Institute, Katowice
  • National Research Institute, Katowice
  • National Research Institute, Katowice
  • National Research Institute, Katowice
Bibliografia
  • 1. Algarroba, N., Rekawek, G.P., Sevan, A. (2020). Visualization of severe acute respiratory syndrome coronavirus 2 invading the human placenta using electron microscopy. American Journal of Obstetrics and Gynecology, Vol. 223, Iss. 2, 275-278, DOI:10.1016/j.ajog.2020.05.023).
  • 2. Bernardi, S.S., Bianchi, G., Botticelli, Rastellia, E., Tomei, A.R., Palmerini, M.G., Continenza, M.A., Macchiarelli, G. (2018). Scanning electron microscopy and microbiological approaches for the evaluation of salivary microorganisms behavior on anatase titanium surfaces: In vitro study. Morphologie, Vol. 102, 336, 1-6.
  • 3. Bhardwaj, J., Hong, S., Jang, J., Han, Ch.H., Lee, J., Jang, J. (2021).Recent advancement in the measurement of photogenic airborne viruses. Journal of Hazardous Material, 420, 126574. DOI: 10.1016/j.jhazmat.2021.126574.
  • 4. Binder, R.A., Alarja, N.A., Robie, E.R., Kochek, K.E., Xiu, L., Rocha-Melogno, L., Abdelgadir, A., Goli, S.V., Farrell, A.S., Coleman, K.K., Turner, A.L., Lautredou, C.C., Lednicky, A.J., Lee, M.J., Polage, C.R., Simmons, R.A., Deshusses, M.A., Anderson, B.D., Gray, G.C. (2020). Environmental and aerosolized severe acute respiratory syndrome coronavirus 2 among hospitalized coronavirus disease 2019 patients. J. Infect. Dis., 9; 222(11), 1798-1806. DOI: 10.1093/infdis/jiaa575.
  • 5. Bonar, M.M., Tilton, J.C. (2017). High sensitivity detection and sorting of infectious Human Immunodeficiency virus (HIV-1) particles by flow virometry. Virol. J., 505, 80-90.
  • 6. Brickey, K.P., Zydneya, A.L., Gomezab, E.D. (2021). FIB-SEM tomography reveals the nanoscale 3D morphology of virus removal filters. Journal of Membrane Science, Vol. 640, 15, 119766.
  • 7. Brown, M.R., Camézuli, S., Davenport, R.J., Petelenz-Kurdziel, E., Øvreås, L., Curtis, T.P. (2015). Flow cytometric quantification of viruses in activated sludge. Water Res., 68, 414-422.
  • 8. Cabiéa, M., Neisius, T., Blanc, W. (2021). Combined FIB/SEM tomography and TEM analysis to characterize high aspect ratio Mg-silicate particles inside silica-based optical fibers. Materials Characterization, 178, 111261. DOI:10.1016/j.matchar.2021.111261.
  • 9. Cairns, A. (2020). Scanning Electron Microscopy (SEM) Investigation of Morphology Changes in the Reduction of Silica Nanoparticles to Elemental Silicon. Portland State University.
  • 10. Chen, Y.-T., Shao, S.-C., Lai, E.C.-C., Hung, M.-J., Chen, Y.-C. (2020). Mortality rate of acute kidney injury in SARS, MERS, and COVID-19 infection: a systematic review and meta-analysis. Crit. Care, 24(1), 439. DOI: 10.1186/s13054-020-03134-8.
  • 11. Corina, D.M., Brussaard, P.D., Thyrhaug, R., Bratbak, G., Vaulot, D. (1999). Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol., 65(1), 45-52.
  • 12. Courbon, P., Wrobel, R., Fabriest, F.F. (1988). A new individual respirable dust sampler, the CIP 10. The Annals of Occupational Hygiene, Vol. 32, Iss. 1, 129-143.
  • 13. Duan, W., Mei, D., Li, J., Liu, Z., Jia, M., Hou, S. (2021). Spatial Distribution of Exhalation Droplets in the Bus in Different Seasons. Special Issue on COVID-19 Aerosol Drivers, Impacts and Mitigation, XVI, 21(8).
  • 14. Fennelly, K.P. (2020). Particle sizes of infectious aerosols: implications for infection control. Lancet Respir. Med., 8(9), 914-924.
  • 15. Gero, A., Tomb, T. (1988). Laboratory Evaluation of the CIP 10 Personal Dust Sampler. American Industrial Hygiene Association, 49(6), 286-292.
  • 16. Golding, C.G., Lamboo, L.L., Beniac, D.R., Booth, T.F. (2016). The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci. Rep., 6, 26516. DOI: 10.1038/srep26516.
  • 17. Gralton, J., Tovey, E., Mclaws, M.L., Rawlinson, W.D. (2011). The role of particle size in aerosolized pathogen transmission: A review. J. Infect., 62, 1-13. DOI:10.1016/j.jinf.2010.11.010
  • 18. Hill, S.C., Pan, Y.-L., Williamson, C., Santarpia, J.L., Hill, H.H. (2013). Fluorescence of bio-aerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria. Opt. Express, 21, pp. 22285-22313, DOI:10.1364/oe.21.022285.
  • 19. https://www.burkle-inc.com/var/assets/catalog/en-us/2022/HTML/index.html
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171682286

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.