PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | 20 | nr 1 | 55--70
Tytuł artykułu

Enhancing Supply Chain Resilience: RIME-Clustering and Ensemble Deep Learning Strategies for Late Delivery Risk Prediction

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Global supply chains are confronted with the challenge of ensuring on-time deliveries while simultaneously enhancing supply chain resilience. Conventional methods aim to address the complexities of modern supply chains, promoting the transition to intelligent and data-driven strategies. Methods: This research represents an innovative methodology for predicting the risk of late deliveries in supply chains. The presented framework combines clustering and multiclassification techniques, where the clustering phase is executed through hyperparameter optimization and a novel metaheuristic called RIME. In the multiclassification phase, five distinct deep learning models are employed, namely, Generative Adversarial Network (GAN), Convolutional Neural Network Long Short-Term Memory (CNN-LSTM), within Ensemble learning via bagging, Ensemble learning stacking, and Ensemble learning within boosting. The three ensemble learning models are based in GAN and CNN-LSTM. Result: This paper presents a systematic evaluation of diverse models in a risk of late delivery prediction framework. This evaluation demonstrates that Ensemble learning stacking provides the higher accuracy by 0.926, showcasing its prowess in precise predictions. Notably, Ensemble learning bagging and Ensemble learning boosting exhibit strong precision. Regression metrics reveal Ensemble learning stacking and Ensemble learning bagging's superior error minimization (MSE 0.11, MAE 0.09). This metric demonstrates that the proposed model can predict the risk level of late delivery in a supply chain with high precision. Conclusion: This paper introduces an innovative clustering and multiclassification-based framework for predicting the risk of late deliveries. The ability of prediction late deliveries risk helps organizations to enhance supply chain resilience by adopting a proactive management risks strategy, optimizing operational processes, and elevating customer satisfaction.(original abstract)
Czasopismo
Rocznik
Tom
20
Numer
Strony
55--70
Opis fizyczny
Twórcy
  • Faculty of Science and Technology, Hassan First University of Settat, Route de Casablanca
  • Physical Geography and Ecosystem Science, Lund University, Sweden
  • Faculty of Science and Technology, Hassan First University of Settat, Route de Casablanca
Bibliografia
  • Aziz, S., Dowling, M., 2019. Machine Learning and AI for Risk Management, in: Lynn, T., Mooney, J.G., Rosati, P., Cummins, M. (Eds.), Disrupting Finance, Palgrave Studies in Digital Business & Enabling Technologies. Springer International Publishing, Cham, pp. 33-50. https://doi.org/10.1007/978-3-030-02330- 0_3
  • Constante, F., 2019. DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS. https://doi.org/10.17632/8GX2FVG2K6.5
  • Douaioui, K., Fri, M., Mabrouki, C., Semma, E.A., 2021. A multiobjective integrated procurement, production, and distribution problem of supply chain network under fuzziness. IFAC-PapersOnLine 54, 1104- 1111. https://doi.org/10.1016/j.ifacol.2021.08.130
  • Fri, M., Douaioui, K., Mabrouki, C., El Alami, S., 2021. Reducing Inconsistency in Performance Analysis for Container Terminals. International Journal of Supply and Operations Management 8, 328-346. https://doi.org/10.22034/ijsom.2021.3.6
  • Fri, M., Fedouaki, F., Douaioui, K., Mabrouki, C., Semma, E.A., 2019. Supply chain performance evaluation models, state-ofthe-art and future directions. Int. J. Eng. Adv. Technol 9, 6336-6347.
  • Geng, X., Liu, T.-Y., Qin, T., Li, H., 2007. Feature selection for ranking, in: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Presented at the SIGIR07: The 30th Annual International SIGIR Conference, ACM, Amsterdam The Netherlands, pp. 407-414. https://doi.org/10.1145/1277741.1277811
  • Helo, P., Hao, Y., 2022. Artificial intelligence in operations management and supply chain management: an exploratory case study. Production Planning & Control 33, 1573- 1590. https://doi.org/10.1080/09537287.2021.188 2690
  • Henderi, H., 2021. Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. IJIIS : Int. J. Inform. Inform. Systems. 4, 13-20. https://doi.org/10.47738/ijiis.v4i1.73
  • Lolla, R., Harper, M., Lunn, J., Mustafina, J., Assi, J., Loy, C. K., & Al-Jumeily OBE, D. (2023). Machine Learning Techniques for Predicting Risks of Late Delivery. Lecture Notes on Data Engineering and Communications Technologies, 343-356. https://doi.org/10.1007/978-981-99-0741- 0_25
  • Mahmud, S., 2023. Modelling and Optimizing Supply Chain Integrated Production Scheduling Problems (PhD Thesis). UNSW Sydney.
  • Menchaca-Méndez, A., Montero, E., FloresGarrido, M., Miguel-Antonio, L., 2022. An algorithm to compute time-balanced clusters for the delivery logistics problem. Engineering Applications of Artificial Intelligence 111, 104795. https://doi.org/10.1016/j.engappai.2022.104 795
  • Moon, I., Shin, E., Sarkar, B., 2014. Min-max distribution free continuous-review model with a service level constraint and variable lead time. Appl. Math. Comput. 229, 310- 315. https://doi.org/10.1016/j.amc.2013.12.034
  • Ngniatedema, T., Chen, L., Guiffrida, A.L., 2016. A modelling framework for improving supply chain delivery performance. IJBPSCM 8, 79. https://doi.org/10.1504/IJBPSCM.2016.077 163
  • Niu, D., Sun, L., Yu, M., Wang, K., 2022. Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model. Energy 254, 124384. https://doi.org/10.1016/j.energy.2022.12438 4
  • Patel, P.S., Pandya, D.M., Shah, M., 2023. A holistic review on the assessment of groundwater quality using multivariate statistical techniques. Environ Sci Pollut Res 30, 85046-85070. https://doi.org/10.1007/s11356-023-27605- x
  • Perez, H.D., Hubbs, C.D., Li, C., Grossmann, I.E., 2021. Algorithmic approaches to inventory management optimization. Process. 9, 1-17. https://doi.org/10.3390/pr9010102
  • Perez, L., Wang, J., 2017. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. https://doi.org/10.48550/ARXIV.1712.046
  • Rammal, A., Perrin, E., Vrabie, V., Bertrand, I., Chabbert, B., 2015. Weighted-covariance factor fuzzy c-means clustering, in: 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). Presented at the 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), IEEE, Beirut, Lebanon, pp. 144-149. https://doi.org/10.1109/TAEECE.2015.711 3616
  • Rendon, N., Giraldo, J.H., Bouwmans, T., Rodríguez-Buritica, S., Ramirez, E., Isaza, C., 2023. Uncertainty clustering internal validity assessment using Fréchet distance for unsupervised learning. Engineering Applications of Artificial Intelligence 124, 106635. https://doi.org/10.1016/j.engappai.2023.106 635
  • Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M., 2007. Filter Methods for Feature Selection - A Comparative Study, in: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (Eds.), Intelligent Data Engineering and Automated Learning - IDEAL 2007, Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 178- 187. https://doi.org/10.1007/978-3-540- 77226-2_19
  • Sarbas, P. et al. 2023. Development of Predictive Models for Order Delivery Risk in a Supply Chain: A Machine Learning Approach. In: Li, X., Rashidi, M.M., Lather, R.S., Raman, R. (eds) Emerging Trends in Mechanical and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-6945- 4_43
  • Su, H., Zhao, D., Heidari, A.A., Liu, L., Zhang, X., Mafarja, M., Chen, H., 2023. RIME: A physics-based optimization. Neurocomputing 532, 183-214. https://doi.org/10.1016/j.neucom.2023.02.0 10
  • Thomas, A., & Panicker, V. V. 2023. Supply Chain Data Analytics for Predicting Delivery Risks Using Machine Learning. Asset Analytics, 159-168. https://doi.org/10.1007/978-981-99-1019- 9_16
  • Węglarczyk, S., 2018. Kernel density estimation and its application. ITM Web Conf. 23, 00037. https://doi.org/10.1051/itmconf/201823000 37
  • Zaghdoudi, M. A., Hajri-Gabouj, S., Varnier, C., Zerhouni, N., & Ghezail, F. 2022. Predictive Analysis Methodology for Industrial Systems: Application in Supplier Delays Prediction. 2022 IEEE Information Technologies & Smart Industrial Systems (ITSIS). https://doi.org/10.1109/itsis56166.2022.101 18391
  • Zheng, G., Kong, L., & Brintrup, A. 2023. Federated machine learning for privacy preserving, collective supply chain risk prediction. International Journal of Production Research, 61(23), 8115-8132. https://doi.org/10.1080/00207543.2022.216 4628
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171685212

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.