PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | z. 182 Współczesne zarządzanie = Contemporary Management | 305--329
Tytuł artykułu

Impact of Hydrogen Cells on Economic Efficiency and the Environment According to Renewable Energy Standards

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The research goal of the work is to determine the levels of profitability of hydrogen cells and their impact on the environment. The authors of the article answer the question under what boundary conditions there is an economic justification for the use of hydrogen cells in various branches of the economy while respecting environmental regulations and standardizing energy production by the principles of a sustainable economy. Design/methodology/approach: The research was carried out using economic measurement model methods. These methods allowed the authors to calculate the market value of the investment with the assumed boundary criteria and to determine the economic effectiveness of the analyzed research problem. Additionally, the authors analyzed the problems of the widespread use of hydrogen in terms of its storage in technical, technological and economic terms. Findings: Research has shown that it is possible to obtain up to 7% by weight. hydrogen relative to the mass of the metal. Carbon nanofibers may become the material of the future for making hydrogen tanks. The use of fuel cells brings many benefits: simple structure and operation, neutral impact on the environment, and low noise level. Moreover, hydrogen fuel cell technology allows for efficient operation for a long time and the possibility of high momentary overloads, which allows for considerable scalability and wide application with economic justification. Practical implications: The presented models have shown that the project of their implementation is fully economically justified and will allow investors to make a rational investment decision. Originality/value: The original contribution of this work is the implication of the data on real research models. This data allowed the authors to make calculations and indicate directions of improvement for the construction of innovative hydrogen cell solutions as part of the standardization of regulations on renewable energy sources in various sectors of the economy. (original abstract)
Słowa kluczowe
Twórcy
  • AGH University of Science and Technology
  • AGH University of Science and Technology
Bibliografia
  • 1. Assfour, B., Leoni, S., Seifert, G. (2010). Hydrogen Adsorption Sites in Zeolite Imidazolate Frameworks. J. Phys., ZIF-8 and ZIF-11.
  • 2. Bioenergy International (2020). Hyundai Motor Invests in Hydrogenious LOHC Technologies. https://bioenergyinternational.com/hyun-dai-motor-invests-in hydrogenious-lohc-technologies/, 10.2023).
  • 3. Boateng, E., Chen, A. (2020). Recent advances in nanomaterial-based solid-state hydrogen storage. Materials Today Advances, 6, 100022. DOI: 10.1016/j.mtadv.2019.100022.
  • 4. Brückner, N., Obesser, K., Bösmann, A., Teichmann, D., Arlt, W., Dungs, J., Wasserscheid, P. (2014). Evaluation of Industrially Applied Heat-Transfer Fluids as Liquid Organic Hydrogen Carrier Systems. ChemSusChem, 7(1), 229-235. DOI: 10.1002/cssc.201300426.
  • 5. Castilla-Martinez, C.A., Moury, R., Demirci, U.B. (2020). Amidoboranes and hydrazinidoboranes: State of the art, potential for hydrogen storage, and other prospects. International Journal of Hydrogen Energy, 45(55), 30731. DOI: 10.1016/j.ijhydene.2020.08.035.
  • 6. Collins, L. (2020). 'World's First International Hydrogen Supply Chain' Realised between Brunei and Japan. https://www.rechargenews. com/transition/-world-s-first-international-hydrogen-supply-chain-realised-between-brunei-and-japan/2-1-798398, 10.2023.
  • 7. Dorociak, M., Tomecki, M. (2019). Wodorowa alternatywa. Report 2019. Gospodarka. Warszawa. https://static.300gospodarka.pl/media/2019/04/alternatywa_wodorowa_ raport.pdf, 10.2023.
  • 8. Fellay, C., Dyson, P.J., Laurenczy, G. (2008). A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. Angewandte, 47(21), 3966-3968. DOI: 10.1002/anie.200800320.
  • 9. Folentarska, A., Kulawik, D., Ciesielski, W., Pavlyuk, V. (2016). Nowoczesne materiały do przechowywania wodoru jako paliwa przyszłości. Chemistry Environment Biotechnology, 19, 125-129. DOI: 10.16926/cebj.2016.19.17.
  • 10. Graetz, J., Reilly, J., Sandrock, G., Johnson, J., Zhou, W.M., Wegrzyn, J., Granath, B. (2017). Liquid Hydrogen - the Fuel of Choice for Space Exploration. https://www.nasa.gov/content/liquid-hydrogen-the-fuel-of-choice-for-spaceexploration, 10.2023.
  • 11. Han, S.S., Furukawa, H., Yaghi, O.M., Goddard, W.A. (2008). Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials. Journal of the American Chemical Society, 130(35), 11580-11581. DOI: 10.1021/ja803247y.
  • 12. Hauenstein, P., Seeberger, D., Wasserscheid, P., Thiele, S. (2020). High-performance direct organic fuel cell using the acetone/isopropanol liquid organic hydrogen carrier system. Electrochemistry Communications, 118. DOI: 10.1016/j.elecom.2020.106786.
  • 13. He, T., Pei, Q., Chen, P. (2015). Liquid organic hydrogen carriers. Journal of Energy Chemistry, 24(5), 587-594. DOI: 10.1016/j.jechem.2015.08.007.
  • 14. Hemme, C., Van Berk, W. (2018). Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields. Applied Sciences, 8(11), 1-19. DOI: 10.3390/app8112282.
  • 15. Hennig, J. (2010). Analiza wpływu na środowisko ogniw wodorowych jako źródła energii. Praca dyplomowa, Kraków.
  • 16. Jaworski, J., Kukulska-Zając, E., Kułaga, P. (2019). Wybrane zagadnienia dotyczące wpływu dodatku wodoru do gazu ziemnego na elementy systemu gazowniczego. Nafta-Gaz, 75(10), 625-632. DOI: 10.18668/ng.2019.10.04.
  • 17. Lhuillier, C., Brequigny, P., Contino, F., Mounaïm-Rousselle, C., Mounaïm-Rousselle, C. (2020). Experimental study on ammonia hydrogen/air combustion in spark ignition engine conditions. Fuel, 269, 117448. DOI: 10.1016/j.fuel.2020.117448.
  • 18. Li, M., Bai Y., Zhang, C., Song, Y., Jiang, S., Grouset, D., Zhang, M. (2019). Review on the research of hydrogen storage system fast refuelling in fuel cell vehicles. International Journal of Hydrogen Energy, 44(21), 10677-10693. DOI: 10.1016/j.ijhydene.2019.02.208.
  • 19. Meyer, D. (2021). Odnawialny wodór: jakie są korzyści dla UE? https://www.europarl.europa.eu/news/pl/headlines/society/20210512STO04004/odnawialny-wodor-jakie-sa-korzysci-dla--ue, 10.2023.
  • 20. Mikulik, J., Niekurzak, M. (2023). Impact of a photovoltaic installation on economic efficiency on the example of a company with high energy consumption. Zeszyty Naukowe Politechniki Śląskiej, Organizacja i Zarządzanie = Organization and Management, no. 169, pp. 521-540.
  • 21. Ministerstwo Klimatu i Środowiska (2019). Polityka energetyczna Polski do 2040 r. https://www.gov.pl/web/klimat/polityka-energetyczna-polski, 10.2023).
  • 22. Nguyen, D., Choi, Y., Park, C., Kim, Y., Jee, J. (2020). Effect of supercharger system on power enhancement of hydrogen-fueled spark-ignition engine under low-load condition. International Journal of Hydrogen Energy, 46(9), 6928-6936. DOI: 10.1016/j.ijhydene.2020.11.144.
  • 23. Niekurzak, M. (2021). The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions. Energies, 14, 7525. https://doi.org/10.3390/en14227525.
  • 24. Niekurzak, M., Kubińska-Jabcoń, E. (2021). Analysis of the Return on Investment in Solar Collectors on the Example of a Household: The Case of Poland. Front. Energy Res., 9, 1-12.
  • 25. Niekurzak, M., Lewicki, W., Drożdż, W., Miązek, P. (2022). Measures for assessing the effectiveness of investments for electricity and heat generation from the hybrid cooperation of a photovoltaic installation with a heat pump on the example of a household. Energies, 16, 6089. https://www.mdpi.com/1996-1073/15/16/6089/pdf?version=1661238859.
  • 26. Ouyang, L., Zhong, H., Li, H.W., Zhu, M. (2018). A Recycling Hydrogen Supply System of NaBH4 Based on a Facile Regeneration Process: A Review. Inorganics, 6(1), 10. DOI: 10.3390/inorganics6010010.
  • 27. Rogala, B. (2022). Fit for 55 - co to jest i co ten pakiet oznacza dla Polski? https://300gospodarka.pl/explainer/fit-for-55-co-to-jest, 10.2023.
  • 28. Romański, L. (2007). Wodór nośnikiem energii. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
  • 29. Sánchez, P. (2021). Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst. Journal of Industrial and Engineering Chemistry, 94, 326-335. DOI: 10.1016/j.jiec.2020.11.003.
  • 30. Sørensen, B., Spazzafumo, G. (2018). Hydrogen and Fuel Cells, Emerging Technologies and Applications. Elsevier Science.
  • 31. Starobrat, A. (2020). Nowe materiały do magazynowania wodoru oparte na skandzie, itrze i glinie: synteza i właściwości fizykochemiczne. Praca doktorska. Warszawa: Uniwersytet Warszawski.
  • 32. Surygała, J. (2008). Wodór jako paliwo. Warszawa: WNT.
  • 33. Takach, M., Sarajlić, M., Peters, D., Kroener, M., Schuldt, F., von Maydell, K. (2022). Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns. Energies, 15(4), 1415. DOI: 10.3390/en15041415.
  • 34. Tarasov, B.P., Fursikov, P.V., Volodin, A.A., Bocharnikov, M.S., Shimkus, Y.Y., Kashin, A.M., Yartys, V.A., Chidziva, S., Pasupathi, S., Lototskyy, M.V. (2021). Metal hydride hydrogen storage and compression systems for energy storage technologies. International Journal Hydrogen Energy, 46(25), 13647-13657. DOI: 10.1016/j.ijhydene.2020.07.085.
  • 35. Wan, Z., Tao, Y., Shao, J., Zhang, Y., You, H. (2019). Ammonia is an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide Fuel Cells. Energy Conversion and Management, 228, 113729. DOI: 10.1016/j.enconman.2020.113729.
  • 36. Wang, D., Ji, Ch., Wang, S., Wang, Z., Yang, J., Zhao, Q. (2020). Numerical Study on the Premixed Oxygen-Enriched Ammonia Combustion. Energy Fuels, 34(12), 16903-16917. DOI: 10.1021/acs.energyfuels.0c02777.
  • 37. Wang, Z., Parrondo, J., He, Ch., Sankarasubramanian, S., Ramani, V. (2019). Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells. Nature Energy, 4, 281-289. DOI: 10.1038/s41560-019-0330-5.
  • 38. Wijayanta, A.T., Oda, T., Purnomo, C.W., Kashiwagi, T., Azizb, M. (2019). Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review. International Journal of Hydrogen Energy, 44(29), 15026-15044. DOI: 10.1016/j.ijhydene.2019.04.112.
  • 39. Xiao, H., Lai, S., Valera-Medina, A., Li, J., Liu, J., Fu, H. (2020). Experimental and modelling study on ignition delay of ammonia/methane fuels. Energy Research, 44, 6939-6949. DOI: 10.1002/er.5460.
  • 40. Yildirim, T., Farha, O.K. (2018). Benchmark Study of Hydrogen Storage in Metal-Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Lett., 3(3), 748-754. DOI: 10.1021/acsenergylett.8b00154.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171686248

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.