PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | z. 182 Współczesne zarządzanie = Contemporary Management | 331--346
Tytuł artykułu

Quality Assessment of Zinc Coatings Applied by Selected Methods

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This article presents the problem of corrosion phenomena occurring on steel products, which contributes significantly to the shortening of safe service life. One method of corrosion protection is the application of metal coatings. The most commonly used zinc coatings are described, along with two methods of their application: the galvanizing bath method and the lamellar method. Design/methodology/approach: Coatings were made on the S195 steel specimens in different process variations. Weight, hardness and thickness, as well as surface defects, were used as criteria for assessing the quality of the coatings. Findings: It was found that the process in the galvanizing bath can produce untight coatings with defects. On the other hand, the coatings applied by the lamellar method, were characterized by better aesthetics, lower weight and thickness compared to galvanic coatings, higher hardness compared to galvanic coatings, and uniformly covered the material without discontinuities in the structure that could impair durability. Originality/value: The research clearly indicated the directions of application of the analyzed galvanic and lamellar coatings. The application of coatings is justified in the use of products exposed to corrosive agents. In terms of decorative qualities, more favourable results were obtained on the specimens with lamellar coatings, as these coatings had a silvery colour and an aesthetically pleasing sheen compared to the galvanic coatings. Due to the characteristics of the coatings, galvanic coatings can be used on parts that are operated in harsh environments, while lamellar coatings can be recommended for products that are required to have a low weight change and certain aesthetics. (original abstract)
Twórcy
  • Silesian University of Technology
  • Rzeszow University of Technology
  • Silesian University of Technology
  • Silesian University of Technology
Bibliografia
  • 1. Amin, M.A., Ibrahim, M.M. (2011). Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthetized glycine derivative. Corrosion Science, 53, 873-885.
  • 2. Diler, E., Rouvellou, B., Rioual, S., Lescop, B., Nguyen Vien, G., Thierry, D. (2014). Characterization of corrosion products of Zn and Zn-Mg-Al coated steel in a marine atmosphere. Corrosion Science, 87, 111-117.
  • 3. Elvins, J., Spittle, J.A., Worsley, D.A. (2005). Microstructural changes in zinc aluminium alloy galvanizing as a function of processing parameters and their influence on corrosion. Corrosion Sciences, 47, 2740-2759.
  • 4. EN 10025-2:2019-11 Hot rolled products of structural steels Part 2: Technical delivery conditions for non-alloy structural steels.
  • 5. Fuarez, M., Gheno, F., White, P. (1993). Application of zinc-aluminium flake non-electrolytic surface coatings. Transactions of the Institute of Metal Finishing, Vol. 71, No 1, 21-25.
  • 6. Gao, Z., Zhang, D., Li, X., Jiang, S., Zhang, Q. (2018). Current status, opportunities and challenges in chemical conversion coatings for zinc. Colloids and Surfaces, A 546 221-236.
  • 7. Giudice, C., Benftez, J., Linares, M. (1997). Zinc-Rich Epoxy Primers Based on Lamellar Zinc Dust. Surface Coatings International, 80, 6, 279-284.
  • 8. Hochmannová, L. (2002). Spherical and Lamellar Zinc Dust. European Coatings Journal, 3, 36-45.
  • 9. Hulser, P., Donner, C., Bauer, G., Hahn, S. (2016), Electrochemical Investigations of Zinc Flake Coatings. Electroplating & Finishing 12, 619-625.
  • 10. ISO 10683:2014:2014-05 Fasteners - Non-electrolytically applied zinc flake coatings.
  • 11. Jędrzejczyk, D., Szłapa, I., Skotnicki, W.(2015). The comparison of surface state evaluation accuracy of zinc coated elements by application of different methods. Metal, 3-5 June, Brno, Czech Republic.
  • 12. Katayama, H., Kuroda, S. (2013) Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn-Al coatings exposed in coastal area. Corrosion Science, 76, 35-41.
  • 13. Łabędź, J. (2017). Cynkowe powłoki ochronne w przemyśle (Zinc protective coatings in industry). Corrosion Protection, 60, 10, 352.
  • 14. Le Bozec, N., Thierry, D., Rohwerder, M., Persson, D., Luckeneder, G., Luxem, L. (2013). Effect of carbon dioxide on the atmospheric corrosion of Zn-Mg-Al coated steel. Corrosion Science, 74, 379-386.
  • 15. Li, J., Du, A., Fan, Y., Zhao, X., Ma, R., Wu, J (2019). Effect of shot-blasting pretreatment on microstructures of hot-dip galvanized coating. Surface and Coatings Technology, 364, 25.
  • 16. Lostak, T., Maljusch, A., Klink, B., Krebs, S., Kimpel, M., Flock, J., Schulz, S., Schuhmann, W. (2014). Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism. Electrochimica Acta 137, 65-74.
  • 17. Muller, B. (2001). Zinc pigments and waterborne paint resins. Pigment & Resin Technology, Vol. 30, No. 6, 357-362.
  • 18. Prosek, T., Nazarov, A., Bexell, U., Thierry, D., Serak, J. (2008). Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions. Corrosion Science, 1, 2216-2231.
  • 19. Qian, Y., Li, Y., Jungwirth, S., Seely, N., Fang, Y., Shi, X. (2015). The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: A review. Int. J. Electrochem. Sci., 10, 10756-10780.
  • 20. Revie, R.W., Uhlig, H.H. (2008). Corrosion and corrosion control. An Introduction to corrosion Science and Engineering. New Jersey: John Wiley & Sons.
  • 21. Rezaee, N., Attar, M.M., Ramezanzadeh, B. (2013). Studying corrosion performance, microstructure and adhesion properties of a room temperature zinc phosphate conversion coating containing Mn2+ on mild steel. Surface & Coatings Technology 236, 361-367.
  • 22. Rodzynkiewicz-Rudzińska, J. (ed.) (1985). Poradnik galwanotechnika (Electroplating Manual), Warszawa: WNT.
  • 23. Schaefer, K., Miszczyk, A. (2013). Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc. Corros. Sci., 66, 380-391.
  • 24. Spathis, P., Poulios, I. (1995). The corrosion and photocorrosion of zinc and zinc oxide coatings. Corrosion Science, Vol. 37, No. 5, 673-680.
  • 25. Surowska, B. (2002). Wybrane zagadnienia z korozji i ochrony przed korozją (Selected issues in corrosion and corrosion protection). Lublin: Lublin University of Technology Publishing House.
  • 26. Szłapa, I., Jędrzejczyk, D., Skotnicki, W., Hajduga, M., Węgrzynkiewicz, S. (2014). Evaluation of the resistance to corrosion and wear of zinc coatings created on cast iron. Metal, 21-23 May Brno, Czech Republic, 1-7.
  • 27. Thierry, D., Prosek, T., Le Bozec, N., Diler, E. (2011). Corrosion protection and corrosion mechanisms of continuous galvanized steel sheet with focus on new coating alloys. Proceedings of Galvatech'11, International Conference on Zinc and Zinc Alloy Coated Steel, 21-24 June, Genova, Italy.
  • 28. UNE-EN 60204-1:2019 Safety of machinery - Electrical equipment of machines - Part 1: General requirements.
  • 29. Wyrzgoł, P. (2022). Analysis of the properties of zinc coatings applied by galvanic and lamellar methods. Engineering project under the direction of Oleksiak B. Silesian University of Technology. Katowice.
  • 30. Zhmurkin, D. (2009). Corrosion Resistance of Bolt Coatings. Tyco Electronics Harrisburg, PA.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171686320

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.