PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | z. 186 W kierunku przyszłości zarządzania | 217--238
Tytuł artykułu

A New Approach to Preprocessing of Emg Signal to Assess the Correctness of Muscle Condition

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Electromyography (EMG) is a technique dealing with the recording and analysis of myoelectric signals formed by physiological variations in the muscle fiber membrane. The voltage potential of surface myoelectrical signals (sEMG) varies over time and depends on the characteristics of the individual subject. One of the main drawbacks of sEMG analysis is that the given acquisition conditions strongly determine the amplitude of the signal. The analysis of sEMG requires appropriate preprocessing, including proper filtering and artifact removal. Moreover, the sEMG data must be converted to a scale standardized for all measurements. This research aimed both to propose a method of sEMG processing to eliminate the occurring disturbances, in particular impulsive artifacts, and to determine the level of muscle excitation based on normalized sEMG. The analysis of muscle excitation level can be applied to assess muscle activity during physical activity. Design/methodology/approach: The proposed algorithm uses set of digital filters, probabilistic distribution and the decomposition of the sEMG signal to attenuate artifacts. Variance analysis of the sEMG derivative is used to determine muscle excitation. The sEMG signals were acquired with the VICON system with the sampling frequency set at 1000 Hz, and processed in MATLAB. During sEMG recordings, standard silver/silver chloride (Ag/AgCl) surface electrodes were used. Findings: The suggested technique was validated using sEMG recorded for eight persons during deep squat. Normalized excitation was determined for the left and right muscles, the rectus femoris, the vastus medialis, and the biceps femoris. Obtained outcomes indicate a possibility to assess the correctness of muscles condition. Originality/value: The combination of the proposed filter and the analysis variance-based thresholding method can effectively eliminate impulse artifacts within the surface myoelectrical signals. (original abstract)
Twórcy
  • Silesian University of Technology
autor
  • Silesian University of Technology
  • Poznan University of Technology
Bibliografia
  • 1. Arabadzhiev, T.I., Dimitrov, V.G., Dimitrova, N.A., Dimitrov, G.V. (2010). Interpretation of EMG integral or RMS and estimates of "neuromuscular efficiency" can be misleading in fatiguing contraction. Journal of Electromyography and Kinesiology, 20, 223-232, https://doi.org/https://doi.org/10.1016/j.jelekin.2009.01.008.
  • 2. Arozi, M., Ariyanto, M., Kristianto, A., Munadi., Setiawan, J.D. (2020). EMG Signal Processing of Myo Armband Sensor for Prosthetic Hand Input using RMS and ANFIS. Proceedings of the 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 36-40, https://doi.org/10.1109/ ICITACEE50144.2020.9239169.
  • 3. Boyer, M., Bouyer, L., Roy, J.S., Campeau-Lecours, A. (2023). Reducing Noise, Artifacts and Interference in Single-Channel EMG Signals: A Review. Sensors, 23, 2927, https://doi.org/10.3390/s23062927.
  • 4. Burden, M.A., Lewis, S.E., Willcox, E. (2014). The effect of manipulating root mean square window length and overlap on reliability, inter-individual variability, statistical significance and clinical relevance of electromyograms. Manual Therapy, 19, 595-601, https://doi.org/10.1016/j.math.2014.06.003.
  • 5. Calderón, J.C., Bolaños, P., Caputo, C. (2014). The excitation-contraction coupling mechanism in skeletal muscle. Biophysical Reviews, 6, 133-160, https://doi.org/10.1007/s12551-013-0135-x.
  • 6. Cavalcanti Garcia, M.A., Vieira, T. (2011). Surface electromyography: Why, when and how to use it. Revista Andaluza de Medicina del Deporte, 4, 17-28.
  • 7. Chalard, A., Belle, M., Montané, E., Marque, P., Amarantini, D., Gasq, D. (2020). Impact of the EMG normalization method on muscle activation and the antagonist-agonist co-contraction index during active elbow extension: Practical implications for post-stroke subjects. Journal of Electromyography and Kinesiology, 51, 102403, https://doi.org/https://doi.org/10.1016/j.jelekin.2020.102403.
  • 8. Chmielewska, D., Stania, M., Kucab-Klich, K., Błaszczak, E., Kwaśna, K., Smykla, A., Hudziak, D., Dolibog, P. (2019). Electromyographic characteristics of pelvic floor muscles in women with stress urinary incontinence following sEMG-assisted biofeedback training and Pilates exercises. PloS One, 14(12), https://doi.org/https://doi.org/10.1371/journal. pone.0225647.
  • 9. Chowdhury, R., Reaz, M., Ali, M., Bakar, A., Chellappan, K., Chang, T. (2013). Surface Electromyography Signal Processing and Classification Techniques. Sensors, 13, 12431- 12466, https://doi.org/10.3390/s130912431.
  • 10. De Luca, C.J. (1997). Physiology and Mathematics of Myoelectric Signals. IEEE Transactions on Biomedical Engineering, BME-26, 313-325, https://doi.org/10.1109/TBME.1979.326534.
  • 11. De Luca, C.J., Donald Gilmore, L., Kuznetsov, M., Roy, S.H. (2010). Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of Biomechanics, 43, 1573-1579, https://doi.org/10.1016/j.jbiomech.2010.01.027.
  • 12. Dulhunty, A.F. (2006). Excitation-Contraction Coupling From the 1950s Into the New Millennium. Clinical and Experimental Pharmacology and Physiology, 33, 763-772, https://doi.org/10.1111/j.1440-1681.2006.04441.x.
  • 13. Farina, D., Fosci, M., Merletti, R. (2002). Motor unit recruitment strategies investigated by surface EMG variables. Journal of Applied Physiology, 92, 235-247, https://doi.org/10.1152/jappl.2002.92.1.235.
  • 14. Farina, D., Stegeman, D.F., Merletti, R. (2016). Biophysics of the Generation of EMG Signals. pp. 1-24. https://doi.org/https: //doi.org/10.1002/9781119082934.ch02.
  • 15. Freriks, B., Hermens, H. (1999). SENIAM 9: European Recommendations for Surface Electromyography, results of the SENIAM project. Roessingh Research and Development.
  • 16. Gupta, A., Sayed, T., Garg, R., Shreyam, R. (2017). Emg Signal Analysis of Healthy and Neuropathic Individuals. IOP Conference Series: Materials Science and Engineering, 225, 012128, https://doi.org/10.1088/1757-899X/225/1/012128.
  • 17. Halaki, M., Ginn, K., (2012). Normalization of EMG Signals: To Normalize or Not to Normalize and What to Normalize to?, pp.175-194, https://doi.org/10.5772/49957.
  • 18. Hermens, H., Freriks, B., Merletti, R., Hägg, G., Stegeman, D.F., Blok, J., Rau, G., Disselhorst-Klug, C. (1999). SENIAM 8: European Recommendations for Surface ElectroMyoGraphy. Roessingh Research and Development.
  • 19. Hyvärinen, A., Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13, 411-430, https://doi.org/https://doi.org/10.1016/S0893- 6080(00)00026-5.
  • 20. Jórasz, K., Truszczyńska-Baszak, A., Dabek, A. (2023). Posture Correction Therapy and Pelvic Floor Muscle Function Assessed by sEMG with Intravaginal Electrode and Manometry in Female with Urinary Incontinence. International Journal of Environmental Research and Public Health, 20. https://doi.org/10.3390/ijerph20010369.
  • 21. Josephson, M.D., Knight, C.A. (2019). Comparison of neural excitation measures from the surface electromyogram during rate-dependent muscle contractions. Journal of Electromyography and Kinesiology, 44, 15-20, https://doi.org/https://doi.org/10.1016/j. jelekin.2018.11.004.
  • 22. Kabe, A.M., Sako, B.H. (2020). Chapter 5 - Analysis of continuous and discrete time signals. In: A.M. Kabe, B.H. Sako (Eds.), Structural Dynamics Fundamentals and Advanced Applications. Academic Press, pp. 271-427, https://doi.org/https://doi.org/ 10.1016/B978-0-12-821615-6.00005-8.
  • 23. Karabulut, D., Ortes, F., Arslan, Y.Z., Adli, M.A. (2017). Comparative evaluation of EMG signal features for myoelectric controlled human arm prosthetics. Biocybernetics and Biomedical Engineering, 37, 326-335, https://doi.org/https://doi.org/10.1016/j. bbe.2017.03.001.
  • 24. Konrad, P. (2005). The ABC of EMG: A practical introduction to kinesiological electromyography, version 1.0 ed. USA: Noraxon INC.
  • 25. Luca, C.J.D. (1997). The Use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics, 13, 135 - 163, https://doi.org/10.1123/jab.13.2.135.
  • 26. Martín, C., Palma, J.C., Alamán, J.M., Lopez-Quiñones, J.M., Alarcón, J.A. (2012). Longitudinal evaluation of sEMG of masticatory muscles and kinematics of mandible changes in children treated for unilateral cross-bite. Journal of Electromyography and Kinesiology, 22, 620-628, https://doi.org/https://doi.org/10.1016/j.jelekin.2012.01.002.
  • 27. Merletti, R., Parker, P. (eds.), (2004). Electromyography: Physiology, Engineering, and Non-Invasive Applications. John Wiley & Sons, Inc.
  • 28. Michell, A. (2013). Understanding EMG. Oxford University Press, https://doi.org/10.1093/med/9780199595501.001.0001.
  • 29. Moritani, T., Stegeman, D., Merletti, R. (2004). Basic Physiology and Biophysics of EMG Signal Generation. In: R. Merletti, P. Parker (Eds.), Electromyography (pp. 1-25); JohnWiley & Sons, https://doi.org/10.1002/0471678384.ch1.
  • 30. Nazarpour, K., Al-Timemy, A.H., Bugmann, G., Jackson, A. (2013). A note on the probability distribution function of the surface electromyogram signal. Brain Research Bulletin, 90, 88-91, https://doi.org/10.1016/j.brainresbull.2012.09.012.
  • 31. Nazarpour, K., Sharafat, A.R., Firoozabadi, S.M. (2005). Negentropy analysis of surface electromyogram signal. IEEE, https: //doi.org/10.1109/ssp.2005.1628736.
  • 32. Olmo, M.D., Domingo, R. (2020). EMG Characterization and Processing in Production Engineering. Materials, 13, 5815. https://doi.org/10.3390/ma13245815.
  • 33. Pilkar, R., Momeni, K., Ramanujam, A., Ravi, M., Garbarini, E., Forrest, G.F. (2020). Use of Surface EMG in Clinical Rehabilitation of Individuals With SCI: Barriers and Future Considerations. Frontiers in Neurology, 11, https://doi.org/10.3389/fneur.2020.578559.
  • 34. Qiu, S., Feng, J., Xu, R., Xu, J., Wang, K., He, F., Qi, H., Zhao, X., Zhou, P., Zhang, L. et al. (2015). A Stimulus Artifact Removal Technique for SEMG Signal Processing During Functional Electrical Stimulation. IEEE Transactions on Biomedical Engineering, 62, 1959-1968, https://doi.org/10.1109/TBME.2015.2407834.
  • 35. Reaz, M.B.I., Hussain, M.S., Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: Detection, processing, classification and applications. Biological Procedures Online, 8, 11-35, https://doi.org/10.1251/bpo115.
  • 36. Rodríguez-Carreño, I., Gila-Useros, L., Malanda-Trigueros, A. (2012). Motor Unit Action Potential Duration: Measurement and Significance: 7. In: I.M. Ajeena (Ed.), Advances in Clinical Neurophysiology. Rijeka: IntechOpen, https://doi.org/10.5772/50265.
  • 37. Roeleveld, K., Stegeman, D.F., Vingerhoets, H.M., Van Oosterom, A. (2003). The motor unit potential distribution over the skin surface and its use in estimating the motor unit location. Acta Physiologica Scandinavica, 161, 465-472. https://doi.org/10.1046/j.13 65- 201X.1997.00247.x.
  • 38. Rose, W. (2014). Electromyogram analysis. Mathematics and Signal Processing for Biomechanics. Delaware.
  • 39. Sadikoglu, F., Kavalcioglu, C., Dagman, B. (2017). Electromyogram (EMG) signal detection, classification of EMG signals and diagnosis of neuropathy muscle disease. Procedia Computer Science, 120, 422-429, https://doi.org/10.1016/j.procs.2017.11.259.
  • 40. Sarillee, M., Hariharan, M., Anas, M.N., Omar, M.I., Aishah, M.N., Oung, Q. (2014). Non-invasive techniques to assess muscle fatigue using biosensors: A review. Proceedings of the IEEE 5th Control and System Graduate Research Colloquium, pp. 187-192, https://doi.org/10.1109/ICSGRC.2014.6908719.
  • 41. Smith., S.W. (1997-1998). The Scientist and Engineer's Guide to Digital Signal Processing.
  • 42. Staudenmann, D., Roeleveld, K., Stegeman, D.F., van Dieën, J.H. (2010). Methodological aspects of SEMG recordings for force estimation - A tutorial and review. Journal of Electromyography and Kinesiology, 20, 375-387. https://doi.org/https: //doi.org/10.1016/j.jelekin.2009.08.005.
  • 43. Stegeman, D., Hermens, H. (2007). Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM) 2007. 1.
  • 44. Sun, J., Liu, G., Sun, Y., Lin, K., Zhou, Z., Cai, J. (2022). Application of Surface Electromyography in Exercise Fatigue: A Review. Frontiers in Systems Neuroscience, 16, https://doi.org/10.3389/fnsys.2022.893275.
  • 45. Trontelj, J.V., Jabre, J., Mihelin, M. (2004). Needle and Wire Detection Techniques. In: R. Merletti, P. Parker (Eds), Electromyography (pp. 27-46). John Wiley & Sons. https://doi.org/10.1002/0471678384.ch2.
  • 46. Vigotsky, A.D., Halperin, I., Lehman, G.J., Trajano, G.S., Vieira, T.M. (2018). Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Frontiers in Physiology, https://doi.org/10.3389/fphys.2017.00985.
  • 47. Wang, M.Q., He, J.J., Zhang, J.H., Wang, K., Svensson, P., Widmalm, S.E. (2010). SEMG activity of jaw-closing muscles during biting with different unilateral occlusal supports. Journal of oral rehabilitation, 37, 9, 719-25.
  • 48. Xu, L., Gu, H., Zhang, Y. (2022). Research Hotspots of the Rehabilitation Medicine Use of sEMG in Recent 12 Years: A Bibliometric Analysis. Journal of Pain Research, Vol. 15, 1365-1377, https://doi.org/10.2147/JPR.S364977.
  • 49. Yeon, S.H., Herr, H.M. (2021). Rejecting Impulse Artifacts from Surface EMG Signals using Real-time Cumulative Histogram Filtering. Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 6235-6241, https://doi.org/10.1109/EMBC46164.2021.9631052.
  • 50. Yin, G., Zhang, X., Chen, D., Li, H., Chen, J., Chen, C., Lemos, S. (2020). Processing Surface EMG Signals for Exoskeleton Motion Control. Frontiers in Neurorobotics, 14, 118, https://doi.org/10.3389/fnbot.2020.00040.
  • 51. Zajac, F.E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical reviews in biomedical engineering, 17, 4, 359-411.
  • 52. Zieliński, G., Baszczowski, M., Rapa, M. et al. (2022b). The Axial Length of the Eyeball and Bioelectrical Activity of Masticatory and Neck Muscles: A Preliminary Report. Pain Res. Manag., 6115782, https://doi.org/10.1155/2022/6115782.
  • 53. Zieliński, G., Matysik-Woźniak, A., Baszczowski, M. et al. (2022a). Effects of visual input on changes in the bioelectrical activity of the cervical and masticatory muscles in myopic subjects. Sci. Rep., 12, 9435. https://doi.org/https://doi.org/10.1038/s41598-022-13607-1.
  • 54. Zwarts, M., Stegeman, D., van Dijk, J. (2004). Surface EMG applications in neurology. IEEE Press Editorial Board, p. 323.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171688996

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.