Warianty tytułu
Języki publikacji
Abstrakty
Municipal district heating systems in Polish cities constitute important elements of these municipalities (and not only of their technical infrastructures). Due to the nature of the basic service that is provided - providing heat (and perhaps year-round comfort in the future) - these systems can be perceived as important parts of the social infrastructures of the cities, creating the appropriate conditions for the existence of people, the functioning of social infrastructure facilities, and the operations of enterprises. The need for heating companies to adapt to any changes in the requirements that arise as a result of the economic, social, environmental, and (increasingly) political and legal changes that take place in its immediate and distant environment requires the implementation of investments. However, the effects of such investments are multidimensional and largely difficult to measure; they depend on the passage of time and complex conditions that are related to the pursuit of sustainable development and security. Their reliable assessment therefore requires the use of appropriate tools. This paper is devoted to an analysis of the practical usefulness of multi-attribute decision-analysis tools in this context, taking various types of such tools into account as well as the conditions for their effective applications. The most promising of these tools is also introduced and discussed. (original abstract)
Rocznik
Tom
Strony
5--19
Opis fizyczny
Twórcy
autor
- AGH University of Science and Technology Kraków, Poland
autor
- AGH University of Science and Technology Kraków, Poland
Bibliografia
- Abokersh M.H., Gangwar S., Spiekman M., Vallès M., Jiménez L., Boer D. (2021). Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept. Renewable Energy, 180, pp. 893-913. doi: 10.1016/j.renene.2021.08.091.
- Arslan A., Arslan O., Kandemir S. (2021). AHP-TOPSIS hybrid decision-making analysis: Simav integrated system case study. Journal of Thermal Analysis and Calorimetry, 145(3), pp. 1191-1202. doi: 10.1007/s10973-020-10270-4.
- Ashikhmin I., Furems E. (2005). UniComBOS - Intelligent Decision Support System for multi-criteria comparison and choice. Journal of Multi-Criteria Decision Analysis, 13(2-3), pp. 147-157. doi: 10.1002/mcda.380.
- Balode L., Dolge K., Blumberga D. (2021). The Contradictions between District and Individual Heating towards Green Deal Targets. Sustainability, 13(6), art. no. 3370.doi: 10.3390/su13063370.
- Bana E Costa C., Vansnick J.-C. (1994). MACBETH - An Interactive Path Towards the Construction of Cardinal Value Functions. International Transactions in Operational Research, 1(4), pp. 489-500. doi: 10.1111/j.1475-3995.1994.00325.x.
- Bazil G.D., Adilova S.K., Abzhanova L.K., Sugurova L.A., Yerzhanova M.E. (2021). Fuzzy simulation of organizational adjustment processes management based on heat supply balanced scorecard. Innovative Infrastructure Solutions, 6(2), art. no. 77. doi: 10.3390/su13063370.
- Bilić T., Raos S., Ilak P., Rajšl I., Pašičko R. (2020). Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies, 13(5), art. no. 1026. doi: 10.3390/en13051026.
- Boran F.E. (2013). A Multidimensional Analysis to Evaluate District Heating Systems. Energy Sources, Part B: Economics, Planning, and Policy, 8(2), pp. 122-129. doi: 10.1080/15567240903289556.
- Brans J.-P., De Smet Y. (2016). PROMETHEE Methods. In: S. Greco, M. Ehrgott & J. Figueira (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys. New York: Springer, pp. 187-219.
- Cimdina G., Slisane D., Ziemele J., Vitolins V., Vigants G., Blumberga D. (2014). Sustainable Development of Renewable Energy resources. Biomass cogeneration plant. Selected papers, 9th International Conference on Environmental Engineering, ICEE 2014, Vilnius: VGTU Press, art. no. enviro.2014.256.
- Dytczak M., Ginda G. (2006). Benefits and costs in selecting fuel for municipality heating systems with the analytic hierarchy process. Journal of Systems Science and Systems Engineering, 15(2), pp. 165-177. doi: 10.1007/s11518-006-5005-7.
- Eltez A., Kilkis I.B., Eltez M. (1999). An AHP approach for evaluating geothermal district energy systems. ASHRAE Transactions, 105, art. no. 771.
- Fang F., Wang N. (2014). Optimal Hierarchical Decision-Making for Heat Source Selection of District Heating Systems. Mathematical Problems in Engineering, 2014, art. no. 594862. doi: 10.1155/2014/594862.
- Figueira J., Mousseau V., Roy B. (2016). ELECTRE Methods. In: S. Greco, M. Ehrgott & J. Figueira (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys. New York: Springer, pp. 155-185.
- Geri F., Sacchelli S., Bernetti I., Ciolli M. (2018). Urban-Rural Bioenergy Planning as a Strategy for the Sustainable Development of Inner Areas: A GIS-Based Method to Chance the Forest Chain. In: A. Bisello, D. Vettorato, P. Laconte & S. Costa (Eds.), Smart and Sustainable Planning for Cities and Regions. Springer International Publishing, pp. 539-550.
- Ghafghazi S., Sowlati T., Sokhansanj S., Melin S. (2010). A multicriteria approach to evaluate district heating system options. Applied Energy, 87(4), pp. 1134-1140. doi: 10.1016/j.apenergy.2009.06.021.
- Goodwyn P., Wright G. (2014). Decision Analysis for Management Judgement. Wiley.
- Greco S., Figueira J., Ehrgott M. (Eds.). (2016). Multiple Criteria Decision Analysis. State of the Art Surveys. New York: Springer.
- Greco S., Matarazzo B., Slowinski R. (2002). Rough approximation by dominance relations. International Journal of Intelligent Systems, 17(2), pp. 153-171. doi: 10.1002/int.10014.
- Grujić M., Ivezić D., Živković M. (2014). Application of multi-criteria decisionmaking model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade. Energy, 67, pp. 341-350. doi: 10.1016/j.energy.2014.02.017.
- He L., Lu Z., Pan L., Zhao H., Li X., Zhang J. (2019). Optimal Economic and Emission Dispatch of a Microgrid with a Combined Heat and Power System. Energies, 12(4), art. no. 604. doi: 10.3390/en12040604.
- Hwang C., Yoon K. (1981). Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. New York: Springer-Verlag.
- Ishizaka A., Nemery P. (2013). Multi-Criteria Decision Analysis. Methods and Software. Wiley.
- Keeney R., Raiffa H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge University Press.
- Kirppu H., Lahdelma R., Salminen P. (2018). Multicriteria evaluation of carbonneutral heat-only production technologies for district heating. Applied Thermal Engineering, 130, pp. 466-476. doi: 10.1016/j.applthermaleng.2017.10.161.
- Konarzewska-Gubała E. (2009). Bipolar: Multiple Criteria Decision Aid Using Bipolar Reference System, vol. 56, LAMSADE, Cahier Documents, Paris.
- Kontu K., Rinne S., Olkkonen V., Lahdelma R., Salminen P. (2015). Multicriteria evaluation of heating choices for a new sustainable residential area. Energy and Buildings, 93, pp. 169-179. doi: 10.1016/j.enbuild.2015.02.003.
- Laktuka K., Pakere I., Lauka D., Blumberga D., Volkova A. (2021). Long-Term Policy Recommendations for Improving the Efficiency of Heating and Cooling. Environmental and Climate Technologies, 25(1), pp. 382-391. doi: doi:10.2478/rtuect-2021-0029.
- Landelma R., Salminen P. (2010). Stochastic Multicriteria Acceptability Analysis (SMAA). In: M. Ehrgott, J.R. Figueira & S. Greco (Eds.), Trends in Multiple Criteria Decision Analysis. New York: Springer, pp. 285-315. doi: 10.1007/978-1-4419-5904-1.
- Larichev O., Moshkovich H. (1997). Verbal Decision Analysis for Unstructured Problems. Kluwer Academic Press.
- Lee D., Park S., Park S. (2007). Development of assessment model for demand-side management investment programs in Korea. Energy Policy, 35(11), pp. 5585-5590.
- Lootsma F. (1992). The REMBRANDT system for multi-criteria decision analysis via pairwise comparisons or direct rating. Report 92-05. Faculteit der Technische Wiskunde en Informatica, Delft University of Technology, Delft, The Netherlands.
- Mróz T.M. (2008). Planning of community heating systems modernization and development. Applied Thermal Engineering, 28(14), pp. 1844-1852. doi: 10.1016/j.applthermaleng.2007.11.020.
- Nowak M. (1992). Interaktywne wielokryterialne wspomaganie decyzji w warunkach ryzyka. Metody i zastosowania. Wydawnictwo Akademii Ekonomicznej w Katowicach.
- Opricović S. (1990). Programski paket VIKOR za visekriterijumsko kompromisno rangiranje. SYM-OP-IS.
- Pellegrini M., Bianchini A., Guzzini A., Saccani C. (2019). Classification through analytic hierarchy process of the barriers in the revamping of traditional district heating networks into low temperature district heating: an Italian case study. International Journal of Sustainable Energy Planning and Management, 20, pp. 51-66. doi: 10.5278/ijsepm.2019.20.5.
- Pinto G., Abdollahi E., Capozzoli A., Savoldi L., Lahdelma R. (2019). Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating. Energies, 12(9), art. no. 1653. doi: 10.3390/en12091653.
- Polikarpova I., Lauka D., Blumberga D., Vigants E. (2019). Multi-Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies, 23(3), pp. 101-109. doi: 10.2478/rtuect-2019-0082.
- Prodanuks T., Blumberga D. (2018). Methodology of municipal energy plans. Priorities for sustainability. Energy Procedia, 147, pp. 594-599. doi: 10.1016/j.egypro.2018.07.076.
- Roy B. (2016). Paradigms and Challenges. In: S. Greco, M. Ehrgott & J. Figueira (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys. New York: Springer, pp. 19-39.
- Saaty T.L., Vargas L.G. (2011). Decision Making with the Analytic Network Process. New York: Springer.
- Saaty T.L., Vargas L.G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. New York: Springer.
- Shu H., Duanmu L., Zhang C., Zhu Y. (2010). Study on the decision-making of district cooling and heating systems by means of value engineering. Renewable Energy, 35(9), pp. 1929-1939. doi: 10.1016/j.renene.2010.01.
- Siksnelyte-Butkiene I., Streimikiene D. (2023). Sustainable energy development: A multi-criteria decision making approach. CRC Press. doi: 10.1201/9781003327196.
- Skiba M., Mrówczyńska M., Sztubecka M., Bazan-Krzywoszańska A., Kazak J.K., Leśniak A., Janowiec F. (2021). Probability estimation of the city's energy efficiency improvement as a result of using the phase change materials in heating networks. Energy, 228, art. no. 120549. doi: 10.1016/j.energy.2021.120549.
- Streimikiene D., Balezentiene L. (2014). Comparative assessment of heat generation technologies in district heat sector of Lithuania. Transformations in Business & Economics, 13(2), pp. 161-173.
- Trzaskalik T. (2014). Wielokryterialne wspomaganie decyzji, przegląd metod i zastosowań. Zeszyty Naukowe/Politechnika Śląska, 74, pp. 239-263.
- Ustawa z dnia 10 kwietnia 1997 r. Prawo energetyczne. (1997). Dz.U. 1997 nr 54, poz. 48 z późn. zm.
- Walsh P.R. (2005). Dealing with the uncertainties of environmental change by adding scenario planning to the strategy reformulation equation. Management Decision, 43(1), pp. 113-122. doi: 10.1108/00251740510572524.
- Wang H., Duanmu L., Lahdelma R., Li X. (2017). Developing a multicriteria decision support framework for CHP based combined district heating systems. Applied Energy, 205(100), pp. 345-368. doi: 10.1016/j.apenergy.2017.0.
- Wang H., Lahdelma R., Salminen P. (2018). Stochastic multicriteria evaluation of district heating systems considering the uncertainties. Science and Technology for the Built Environment, 24(8), pp. 830-838. doi: 10.1080/23744731.2018.1457399.
- Wang N., Chen X., Wu G. (2019). Public Private Partnerships, a Value for Money Solution for Clean Coal District Heating Operations. Sustainability, 11(8), art. no. 2386. doi: 10.3390/su11082386.
- Wen Q., Yan Q., Qu J., Liu Y. (2021). Fuzzy Ensemble of Multi-Criteria Decision Making Methods for Heating Energy Transition in Danish Households. Mathematics, 9(19), art. no. 2420. doi: 10.3390/math9192420.
- Wu Z., Sha L., Y. Z. (2022). Simulation and experiment investigation of a heating and power double function system with multi-objective optimization. Sustainable Energy Technologies and Assessments, 49, art. no. 101768. doi: 10.1016/j.seta.2021.101768.
- Wu Z., Wang Y., You S., Zhang H., Zheng X., Guo J., Wei S. (2020). Thermo-economic analysis of composite district heating substation with absorption heat pump. Applied Thermal Engineering, 166, art. no. 114659. doi: 10.1016/j.applthermaleng.2019.114659.
- Wu Z., You S., Zhang H., Wang Y., Jiang Y., Liu Z., Sha L., Wei S. (2021). Experimental investigations and multi-objective optimization of an air-source absorption heat pump for residential district heating. Energy Conversion and Management, 240, art. no. 114267. doi: 10.1016/j.enconman.2021.114267.
- Yuan M., Thellufsen J., Sorknæs P., Lund H., Liang Y. (2021). District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Conversion and Management, 244, art. no. 114527. doi: 10.1016/j.enconman.2021.114527.
- Zhao J., Li Y., Li J., Li Z. (2021). Operation Characteristic Analysis and Parameter Optimization of District Heating Network with Double Heat Sources. The 2020 International Symposium on Geographic Information, Energy and Environmental Sustainable Development 26-27 December 2020, Tianjin, China, 772(1), art. no. 012077. doi: 10.1088/1755-1315/772/1/012077.
- Ziemele J., Pakere I., Blumberga D. (2016). The future competitiveness of the non-Emissions Trading Scheme district heating systems in the Baltic States. Applied Energy, 162(100), pp. 1579-1585. doi: 10.1016/j.apenergy.2015.0.
- Ziemele J., Pakere I., Talcis N., Blumberga D. (2014a). Multi-criteria Analysis of District Heating Systems in Baltic States. Energy Procedia, 61, pp. 2172-2175. doi: 10.1016/j.egypro.2014.12.102.
- Ziemele J., Vigants G., Vitolins V., Blumberga D., Veidenbergs I. (2014b). District Heating Systems Performance Analyses. Heat Energy Tariff. Environmental and Climate Technologies, 13(1), pp. 32-43. doi: doi:10.2478/rtuect-2014-0005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171693931