PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
22 (2015) | nr 5 (102) | 5--22
Tytuł artykułu

Biologicznie aktywne peptydy pochodzące z białek żywności: badania in silico, in vitro i in vivo, aspekty aplikacyjne oraz ocena bezpieczeństwa

Treść / Zawartość
Warianty tytułu
Biologically Active Peptides From Food Proteins: in Silico, in Vitro and in Vivo Studies, Application Aspects, and Safety Evaluation
Języki publikacji
PL
Abstrakty
Bioaktywne peptydy obecne w żywności mogą przyczynić się do zmniejszenia występowania chorób przewlekłych. W produktach spożywczych peptydy zazwyczaj są uwalniane poprzez hydrolizę enzymatyczną białek. W pracy przedstawiono wybrane metody analityczne, chemometryczne i bioinformatyczne, stosowane w badaniach molekularnych i biologicznych właściwości peptydów pochodzących z białek żywności. Opisano także metody zwiększania biodostępności peptydów oraz wybrane aspekty oceny ich bezpieczeństwa. Zrozumienie aspektów molekularnych biologicznej aktywności peptydów stwarza podstawy postępu w wykorzystaniu tych związków jako składników żywności zapobiegających chorobom dietozależnym. (abstrakt oryginalny)
EN
Bioactive peptides present in foods may contribute to reducing the prevalence of chronic diseases. In foods, the peptides are usually released via enzymatic hydrolysis of proteins. In the paper, some selected analytical, chemometrics, and bioinformatics methods are presented, which are applied to evaluate the molecular and biological aspects of peptides derived from food proteins. There are also described methods to enhance the bioavailability of peptides as are some selected aspects of evaluating the safety. Understanding the molecular aspects of bioactive activity of peptides provides a basis for the progress in utilizing those compounds as components of foods that prevent the diet-related diseases. (original abstract)
Rocznik
Numer
Strony
5--22
Opis fizyczny
Twórcy
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
Bibliografia
  • [1] Agyei D, Danquah M.K.: Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv., 2011, 29, 272-277.
  • [2] Alemán A., Giménez B., Pérez-Santin E., Gómez-Guillén M.C., Montero P.: Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chem., 2011, 125, 334-341.
  • [3] Bączek T.: Usprawnienie identyfikacji peptydów w proteomice z wykorzystaniem chemometrycznej analizy danych. Rozprawa habilitacyjna, Akademia Medyczna, Gdańsk 2006.
  • [4] Bączek T., Kaliszan R.: Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Proteomics, 2009, 9, 835-847.
  • [5] Barbosa-Cánovas G.V., Ortega-Rivas E., Juliano P., Yan H.: Encapsulation processes. In: Food Powders. Physical properties, processing and functionality. Kluver Academic Plenum Publishers. New York 2005, p. 199.
  • [6] Barkia A., Bougatef A., Khaled H.B., Nasri M.: Antioxidant activities of sardinelle heads and/or viscera protein hydrolysates prepared by enzymatic treatment. J. Food Biochem., 2010, 34, 303-320.
  • [7] Boonen K., Landuyt B., Baggerman G., Husson S.J., Huybrechts J., Schoofs L.: Peptidomics: The integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J. Sep. Sci., 2008, 31, 427-445.
  • [8] Boutrou R., Gaudichon C., Dupont D., Jardin J., Airinei G., Marsset-Baglieri A., Benamouzig R., Tomé D., Léonil J.: Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am. J. Clin. Nutr., 2013, 97, 1314-1323.
  • [9] Carrasco-Castilla J., Hernández-Álvarez A.J., Jiménez-Martínez C., Gutiérrez-López G.F., Dávila- Ortiz G.: Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng. Rev., 2012, 4, 224-243.
  • [10] Carrera M., Cañas B., Gallardo J.M.: The sarcoplasmic fish proteome: pathways, metabolic networks and potential bioactive peptides for nutritional inferences. J. Proteom., 2013, 78, 211-220.
  • [11] Català-Clariana S., Benavente F., Giménez E., Barbosa J., Sanz-Nebot V.: Identification of bioactive peptides in hypoallergenic infant milk formulas by CE-TOF-MS assisted by semiempirical model of electromigration behaviour. Electrophoresis, 2013, 34, 1886-1894.
  • [12] Chang K.Y., Yang J.-R.: Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS ONE, 2013, 8, article e70166.
  • [13] Chen T.-L., Lo Y.-C, Hu W.-T., Wu M.-C., Chen S.-T., Chang H.-M.: Microencapsulation and modification of synthetic peptides of food proteins reduces the blood pressure of spontaneously hypertensive rats. J. Agric. Food Chem., 2003, 51, 1671-1675.
  • [14] Cushman D.W., Cheung H.S.: Spectrophotometric assay and properties of the angiotensinconverting enzyme of rabbit lung. Biochem. Pharmacol., 1971, 20, 1637-1648.
  • [15] Cybul M., Nowak R.: Przegląd metod stosowanych w analizie właściwości antyoksydacyjnych wyciągów roślinnych. Herba Pol., 2008, 54 (1), 68-78.
  • [16] Dajnowiec F., Kubiak A., Zander L., Banaszczyk P.: Struktura mikrokapsułek estrów etylowych oleju roślinnego. Acta Agrophys., 2011, 17, 33-41.
  • [17] Dallas D.C., Guerrero A., Khaldi N., Castillo P.A., Martin W.F., Smilowitz J.T., Bevins C.L., Barile D., German B., Lebrilla C.B.: Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J. Proteom. Res., 2013, 12, 2295-2304.
  • [18] Darewicz M., Dziuba B., Minkiewicz P., Dziuba J.: The preventive potential of milk and colostrum proteins and protein fragments. Food Rev. Int., 2011, 27, 357-388.
  • [19] Darewicz M., Dziuba J.: Peptydy funkcjonalnie aktywne. W: Biologicznie aktywne peptydy i białka żywności. Red: J. Dziuba, Ł. Fornal. WNT, Warszawa 2009, ss. 71-109.
  • [20] Darewicz M., Dziuba J., Minkiewicz P.: Computational characterisation and identification of peptides for in silico detection of potentially celiac-toxic proteins. Food Sci. Technol. Int., 2007, 13, 125-133.
  • [21] Darewicz M., Dziuba J., Minkiewicz P.: Celiac disease - background, molecular, bioinformatics and analytical aspects. Food Rev. Int., 2008, 24, 311-329.
  • [22] Dembczyński R., Jankowski T.: Ukierunkowanie komórek drobnoustrojów metodą kapsułkowania - stan obecny i możliwości rozwoju tej metody. Żywność, Nauka, Technologia, Jakość, 2004, 4 (41), 5-17.
  • [23] Dłużewska E.: Mikrokapsułkowanie dodatków do żywności. Przem. Spoż., 2008, 5, 30-35.
  • [24] Dziuba J., Minkiewicz P., Mogut D.: Determination of theoretical retention times for peptides analyzed by reversed-phase high-performance liquid chromatography. Acta Sci. Polon. Technol. Aliment., 2011, 10, 209-221.
  • [25] Eriksson L., Johansson E., Kettaneh-Wold N., Trygg J., Wikström C., Wold S.: Non-linear PLS modelling. W: Multi- and megavariate data analysis. Part II. Advanced applications and method extensions. Second revised and enlarged version. Umetrics Academy, Umeå, Sweden, 2006, pp. 153- 168.
  • [26] Fekete S., Veuthey J.-L., Guillarme D.: New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. J. Pharm. Biomed. Anal., 2012, 69, 9-27.
  • [27] Floris M., Moro S.: Mimicking peptides... In silico. Mol. Inf., 2012, 31, 12-20.
  • [28] Forner F., Foster L.J., Toppo S.: Mass spectrometry data analysis in the proteomics era. Curr. Bioinform., 2007, 2, 63-93.
  • [29] García M.C., Puchalska P., Esteve C., Marina M.L.: Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta, 2013, 106, 328-349.
  • [30] Gautam A., Chaudhary K., Singh S., Joshi A., Anand P., Tuknait A., Mathur D., Varshney G.C., Raghava G.P.S.: Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides. Nucleic Acids Res., 2014, 42, D444-D449.
  • [31] Goodarzi M., van der Heyden Y., Fumar-Timofei S.: Towards better understanding of featureselection or reduction techniques for Quantitative Structure-Activity Relationship models. Trends Anal. Chem., 2013, 42, 49-62.
  • [32] Gregoriadis G., Perrie Y., Liposomes. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd, Chichester, UK, 2010, DOI: 10.1002/9780470015902.a0002656.pub2.
  • [33] Hartmann R., Wal J.M., Bernard H., Pentzien A.K.: Cytotoxic and allergenic potential of bioactive proteins and peptides. Curr. Pharm. Des., 2007, 13, 897-920.
  • [34] He R., Ma H., Zhao W., Qu W., Zhao J., Luo L., Zhu W.: Modelling the QSAR of ACE-inhibitory peptides with ANN and its applied illustration. Int. J. Pept., 2012, article 620609.
  • [35] Hemmateenejad B., Miri R., Elyasi M.: A segmented principal component analysis-regression approach to QSAR study of peptides. J. Theor. Biol, 2012, 305, 37-44.
  • [36] Hernández-Ledesma B., Contreras M.D.M., Recio I.: Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci., 2011, 165, 23-35.
  • [37] Ibáñez C., Simó C., García-Cañas V., Cifuentes A., Castro-Puyana M.: Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in foodomics: A review. Anal. Chim. Acta, 2013, 802, 1-13.
  • [38] de la Iglesia D., Garcia-Remesa M., de la Calle G., Kulikowski C., Sanz F., Maojo V.: The impact of computer science in molecular medicine: enabling high-throughput research. Curr. Topics Med. Chem., 2013, 13, 526-575.
  • [39] Iwaniak A.: Analiza zależności między strukturą peptydów pochodzących z białek żywności a ich aktywnością inhibitorową wobec enzymu konwertującego angiotensynę. Ocena przydatności metod in silico w badaniach nad białkowymi prekursorami bioaktywnych peptydów. Wyd. UWM, Olsztyn 2011.
  • [40] Iwaniak A., Minkiewicz P., Darewicz M.: Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. Food Sci. Food Saf., 2014, 13, 114-134.
  • [41] Jimsheena V.K., Gowda L.R.: Angiotensin I-converting enzyme (ACE) inhibitory peptides derived from arachin by simulated gastric digestion. Food Chem., 2011, 125, 561-569.
  • [42] Jing P., Qian B., Hea Y., Zhao X, Zhang J., Zhao D., Lv Y., Deng Y.: Screening milk-derived antihypertensive peptides using quantitative structure activity relationship (QSAR) modelling and in vitro/in vivo studies on their bioactivity. Int. Dairy J., 2014, 35, 95-101.
  • [43] Kašička V.: Recent developments in capillary and microchip electroseparations of peptides (2011- 2013). Electrophoresis, 2014, 35, 69-95.
  • [44] Kawashima S., Pokarowski P., Pokarowska M., Koliński A., Katayama T., Kanehisa M.: AAindex: amino acid index database, progress report 2008. Nucleic Acids Res., 2008, 36, D202-D205.
  • [45] Kim H.O., Li-Chan E.C.Y., Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food Chem., 2006, 64, 10102-10111.
  • [46] Korhonen H.: Milk-derived bioactive peptides: From science to applications. J. Funct. Foods, 2009. 1, 177-187.
  • [47] Korhonen H., Pihlanto A.: Bioactive peptides: Production and functionality. Int. Dairy J., 2006, 16, 945-960.
  • [48] Krokhin O.: Peptide retention prediction in reversed-phase chromatography: Proteomic applications. Expert Rev. Proteom., 2012, 9, 1-4.
  • [49] Kulkarni S.B., Betageri G.V., Singh M.: Factors affecting microencapsulation of drugs in liposomes. J. Microencapsulation, 1995, 12, 229-246.
  • [50] Kurtz T.W., Curtis Morris R. Jr., Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension, 1987, 10, 128-131.
  • [51] Lasoń E., Ogonowski J.: Kapsułkowanie - metoda immobilizacji materiałów bioaktywnych. LAB Laboratoria, Aparatura, Badania, 2010, 15 (1), 29-35.
  • [52] Lasoń E., Ogonowski J.: Kapsułkowanie w przemyśle spożywczym. LAB Laboratoria, Aparatura, Badania, 2010, 15 (3), 34-40.
  • [53] Lata S., Sharma B.K., Raghava G.P.S.: Analysis and prediction of antibacterial peptides. BMC Bioinform., 2007, 8, article 263.
  • [54] Lau C.C., Abdullah N., Shuib A.S.: Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom, Pleurotus cystidiosus O.K. Miller identified by LC-MS/MS. BMC Compl. Alternative Med., 2013, 13, article 313.
  • [55] Lau C.C., Abdullah N., Shuib A.S., Aminudin N.: Novel angiotensin I-converting enzyme inhibitory peptides derived from edible mushroom Agaricus bisporus (J.E. Lange) imbach identified by LCMS/ MS. Food Chem., 2014, 148, 396-401.
  • [56] Lothrop A.P., Torres M.P., Fuchs S.M.: Deciphering post-translational modification codes. FEBS Lett., 2013, 587, 1247-1257.
  • [57] Ma B., Johnson R.: De novo sequencing and homology searching. Mol. Cell. Proteom., 2012, 11, article 10.1074/mcp.O111.014902-1.
  • [58] Maeno M., Nakamura Y., Mennear J.H., Bernard B.K.: Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L- proline and L-isoleucyl-L-prolyl-L-proline): III. Single- and/or repeated-dose toxicity of tripeptides-containing Lactobacillus helveticus-fermented milk powder and casein hydrolysate in rats. Int. J. Toxicol., 2005, 24, 41-59.
  • [59] Maldonado A.G., Doucet J.P., Petitjean M., Fan B.-Y.: Molecular similarity and diversity in chemoinformatics: From theory to applications. Mol. Divers., 2006, 10, 39-79.
  • [60] Martínez-Mayorga K., Medina-Franco J.L.: Chemoinformatics - application in food chemistry. Adv. Food Nutr. Res., 2009, 58, 33-56.
  • [61] Minkiewicz P., Bucholska J., Darewicz M., Borawska J.: Epitopic hexapeptide sequences from Baltic cod parvalbumin beta (allergen Gad c 1) are common in the universal proteome. Peptides, 2012, 38, 105-109.
  • [62] Minkiewicz P., Dziuba J., Darewicz M., Iwaniak A., Dziuba M., Nałęcz D.: Food peptidomics. Food Technol. Biotechnol., 2008, 46, 1-10.
  • [63] Minkiewicz P., Dziuba J., Darewicz M., Iwaniak A., Michalska J.: On line programs and databases of peptides and proteolytic enzymes - a brief update for 2007-2008. Food Technol. Biotechnol., 2009, 47, 345-355.
  • [64] Minkiewicz P., Dziuba J., Iwaniak A., Dziuba M., Darewicz M.: BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int., 2008, 91, 965-980.
  • [65] Minkiewicz P., Miciński J., Darewicz M., Bucholska J.: Biological and chemical databases for research into the composition of animal source foods. Food Rev. Int., 2013, 29, 321-351.
  • [66] Mooney C., Haslam N.J., Pollastri G., Shields D.C.: Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE, 2012, 7, article e45012.
  • [67] Moreno F.J.: Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed. Pharmacother., 2007, 61, 50-60.
  • [68] Murray B.A., Walsh D.J., FitzGerald R.J.: Modification of the furanacryloyl-Lphenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity. J. Biochem. Biophys. Methods, 2004, 59, 127-137.
  • [69] Nag O.K., Awasthi V.: Surface engineering of liposomes for stealth behavior. Pharmaceutics, 2013, 5, 542-569.
  • [70] Nakahara T., Sugimoto K., Sano A., Yamaguchi H., Katayama H., Uchida R.: Antihypertensive mechanism of a peptide-enriched soy sauce-like seasoning: the active constituents and its suppressive effect on renin-angiotensin-aldosterone system. J. Food Sci., 2011, 76, H201-H206.
  • [71] Panchaud A., Affolter M., Kussmann M.: Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. J. Proteom., 2012, 75, 3546-3559.
  • [72] Piasecka A., Moderska K.: Mikrokapsulacja białek - metody i zastosowanie. Biotechnologia, 2010, 1 (88), 34-45.
  • [73] Picariello G., Mamone G., Nitride C., Addeo F., Ferranti P.: Protein digestomics with integrated platforms to study food-protein digestion and derived functional and active peptides. Trends Anal. Chem., 2013, 52, 120-134.
  • [74] Pihlanto A., Mäkinen S.: Antihypertensive properties of plant protein derived peptides. In: Bioactive food peptides in health and disease. Eds. B. Hernández-Ledesma, C.-C. Hsieh, InTechOpen, Rijeka 2013, pp. 145-182.
  • [75] Ponstein-Simarro Doorten A.Y., vd Wiel J.A.G., Jonker D.: Safety evaluation of an IPP tripeptidecontaining milk protein hydrolysate. Food Chem. Toxicol., 2009, 47, 55-61.
  • [76] Pripp A.H.: Quantitative structure-activity relationship of prolyl oligopeptidase inhibitory pepides derived from d-casein using simple amino acid descriptors. J. Agric. Food Chem., 2006, 54, 224- 228.
  • [77] Pripp A.H., Isaksson T., Stepaniak L., Sørhaug T.: Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. Eur. Food Res. Technol., 2004, 219, 579-583.
  • [78] Pripp A.H., Isaksson T., Stepaniak L., Sørhaug T., Ardö Y.: Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. J. Agric. Food Chem., 2005, 16, 484-494.
  • [79] Qureshi A., Thakur N., Tandon H., Kumar M.: AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res., 2014, 42, D1147- D1153.
  • [80] Qureshi T.M., Vegarud G.E., Abrahamsen R.K., Skeie S.: Characterization of the Norwegian autochthonous cheese Gamalost and its angiotensin I-converting enzyme (ACE) inhibitory activity during ripening. Dairy Sci. Technol., 2012, 92, 613-625.
  • [81] Rajam R., Karthik P., Parthasarathi S., Joseph G.S., Anandharamakrishnan C.: Effect of whey protein - alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. J. Funct. Foods, 2012, 4, 891-898.
  • [82] Ruiz Ruiz J.C., Segura-Campos M.R., Betancur-Ancona D.A., Chel-Guerrero L.A.: Encapsulation of Phaseolus lunatus protein hydrolysate with angiotensin-converting enzyme inhibitory activity. Biotechnology, 2013, article 341974.
  • [83] Ryan J.T., Ross R.P., Bolton D., Fitzgerald G.F., Stanton C.: Bioactive peptides from muscle sources: meat and fish. Nutrients, 2011, 3, 765-791.
  • [84] Sagardia I., Roa-Ureta R.H., Bald C.: A new QSAR model, for angiotensin I-converting enzyme inhibitory oligopeptides. Food Chem., 2013, 136, 1370-1376.
  • [85] Sánchez-Rivera L., Martínez-Maqueda D., Cruz-Huerta E., Miralles B., Recio I.: Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides, Food Res. Int., 2014, 63, 170- 181.
  • [86] Sarmadi B.H., Ismail A.: Antioxidative peptides from food proteins: a review. Peptides, 2010, 31, 1949-1956.
  • [87] Schlimme E., Meisel H.: Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. Nahrung, 1995, 39, 1-20.
  • [88] Schmidt A., Claassen M., Aebersold R.: Directed mass spectrometry: towards hypothesis-driven proteomics. Curr. Opin. Chem. Biol., 2009, 13, 510-517.
  • [89] Segura-Campos M., Chel-Guerrero L., Betancur-Ancona D., Hernandez-Escalante V.M.: Bioavailability of bioactive peptides. Food Rev. Int., 2011, 27, 213-226.
  • [90] Sénéchal S., Kussmann M.: Nutriproteomics technologies and applications for identification and quantification of biomarkers and ingredients. Proc. Nutr. Soc., 2011, 70, 351-364.
  • [91] Shtatland T., Guettler D., Kossodo M., Pivovarov M., Weissleder R.: PepBank - a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinform., 2007, 8, article 280.
  • [92] Stebelska K., Wyrozumska P., Grzybek M., Sikorski A.: Charakterystyka i medyczne zastosowanie konstrukcji liposomowych. Adv. Clin. Exp. Med., 2002, 11, 229-242.
  • [93] Strona MetaComBio: Dostęp w Internecie [01.03.2014.]: http://www.uwm.edu.pl/metachemibio/ index.php/about-metacombio.
  • [94] Suder P., Silberring J. (Red.): Spektrometria mas. Wyd. UJ, Kraków 2006.
  • [95] Théolier J., Fliss I., Jean J., Hammami R.: MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin. Dairy Sci. Technol., 2014, 94, 181-193.
  • [96] The UniProt Consortium: Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res., 2014, 42, D191-D198.
  • [97] Todeschini R., Consonni V.: QSAR/QSPR Modeling. In: Molecular descriptors for chemoinformatics. Vol. I: Alphabetical listing. Wiley-VCH Verlag GmbH, Weinheim 2006, p. 153.
  • [98] Udenigwe C.C.: Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol., 2014, 36, 137-143.
  • [99] Udenigwe C.C., Aluko R.: Chemometric analysis of the amino acid requirements of antioxidant food hydrolysates. Int. J. Mol. Sci., 2011, 12, 3148-3161.
  • [100] Van Lancker F., Adams A., De Kimpe N.: Chemical modifications of peptides and their impact on food properties. Chem. Rev., 2011, 111, 7876-7903.
  • [101] Van Putten M.C., Frewer L.J., Gilissen L.J.W., Gremmen B., Peijnenburg A.C.M., Wichers H.J.: Novel foods and food allergies: a review of the issues. Trends Food Sci. Technol., 2006, 17, 289- 299.
  • [102] Vaucher R.A., de Souza da Motta A., Brandelli A.: Evaluation of in vitro cytotoxicity of the antimicrobial peptide P34. Cell Biol. Int., 2010, 34, 317-323.
  • [103] Waghu F.H., Gopi L., Barai R.S., Ramteke P., Nizami B., Idicula-Thomas S.: CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res., 2014, 42, D1154-D1158.
  • [104] Weininger D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Computer Sci., 1988, 28, 31-36.
  • [105] Welch C. J., Wu N., Biba M., Hartman R., Brkovic T., Gong X., Helmy R., Schafer W., Cuff J., Pirzada Z., Zhou L.: Greening analytical chromatography. Trends Anal. Chem., 2010, 29, 667-680.
  • [106] White B.L., Sanders T.H., Davis J.P.: Potential ACE-inhibitory activity and nanoLC-MS/MS sequencing of peptides derived from aflatoxin contaminated peanut meal. LWT - Food Sci. Technol., 2014, 56, 537-542.
  • [107] Wu J., Aluko R.E., Nakai S.: Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship modeling of peptides containing 4-10 amino acids residues. QSAR Comb. Sci., 2006, 25, 873-880.
  • [108] Wynendaele E., Bronselaer A., Nielandt J., D'Hondt M., Stalmans S., Bracke N., Verbeke F., Van De Wiele C., De Tré G., De Spiegeleer B.: Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res., 2013, 41, D655-D659.
  • [109] Xie F., Smith R. D., Shen Y.: Advanced proteomic liquid chromatography. J. Chromatogr. A, 2012, 1261, 78-90.
  • [110] Yanrong R., Qiang W., Shaocheng C., Haiyan C.: Integrating computational modeling and experimental assay to discover new potent ACE-inhibitory peptides. Mol. Inf., 2014, 33, 43-52.
  • [111] You L., Regenstein J.M., Liu R.H.: Optimization of hydrolysis conditions for the production of antioxidant peptides from fish gelatin using response surface methodology. J. Food Sci., 2010, 75, C582-C587.
  • [112] Zamyatnin A.A., Borchikov A.S., Vladimirov M.G., Voronina O.L.: The EROP-Moscow oligopeptide database. Nucleic Acids Res., 2006, 34, D261-D266.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171400141

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.