PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | nr 14 | 17--25
Tytuł artykułu

Microalgae as efficient feedstock for biorefinery

Treść / Zawartość
Warianty tytułu
Jednokomórkowe glony jako surowiec dla biorafinerii
Języki publikacji
EN
Abstrakty
EN
The global energy demand keeps rising and easy accessible fossil fuel reserves are gradually decreasing which leads to increasing interest in renewable energy sources. The energy production can be based on various sources alternative to petroleum, but the material economy mainly depends on biomass, in particular plant biomass. The potential of renewable biomass resources conversion to chemicals is sufficient to replace fossil crude oil as a carbon resource. In recent years it has increasingly become clear that first generation biofuels have got comparably unfavorable energy balances and therefore most likely can never play a major role in global energy supply. Lignocellulosic biomass is much cheaper for biofuel production than first generation feedstock, but still there are no efficient treatment technologies for large-scale applications. The microalgae might be the future source of biofuels and chemicals production. Microalgal lipids and carbohydrates could be converted to biofuels and the rest of microalgal biomass contains many valuable components, all of which are worth developing into refined products for various applications. (original abstract)
Światowy popyt na energię nieustannie wzrasta, a dostępne złoża paliw kopalnych stopniowo się wyczerpują, co przyczynia się do wzrostu zainteresowania odnawialnymi źródłami energii. Produkcja energii może być oparta na wielu alternatywnych paliwach, ale gospodarka materiałowa jest w głównej mierze oparta na biomasie, w szczególności pochodzenia roślinnego. Potencjał konwersji biomasy do użytecznych związków chemicznych jest wystarczający by zastąpić ropę naftową i węgiel. W ostatnich latach stało się jasne, że biopaliwa pierwszej generacji mają mało korzystny bilans energetyczny i prawdopodobni nigdy nie będą odgrywać znaczącej roli w globalnym rynku energetycznym. Lignocelulozowa biomasa jest znacznie tańszym surowcem do produkcji biopaliw, ale nadal nie opracowano wydajnych sposobów jej przetwarzania, które mogłyby znaleźć zastosowanie w produkcji przemysłowej na dużą skalę. Jednokomórkowe glony mogą stać się przyszłością zarówno biopaliw jak i produkcji szerokiej gamy związków chemicznych. Lipidy i węglowodany zawarte w ich komórkach stanowić mogą substrat do produkcji biopaliw, a pozostałą część biomasy zawierająca szereg cennych składników, można przetworzyć w rafinowane produkty o szerokim spektrum zastosowań. (abstrakt oryginalny)
Słowa kluczowe
Czasopismo
Rocznik
Numer
Strony
17--25
Opis fizyczny
Twórcy
  • University of Lodz, Poland
  • University of Lodz, Poland
  • University of Lodz, Poland
  • Research Institute of Horticulture in Skierniewice
Bibliografia
  • Aresta M., A. Dibenedetto, G. Barberio,. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study, "Fuel Process. Technol.", 86:14-15 (2005)1679-1693.
  • Barsanti L., P. Gualtieri,. Algae: anatomy, biochemistry, and biotechnology, CRC Press, USA 2006.
  • Benemann J.R., J. Olivares, S. Mayfield, J. Kneiss, G. Dirks, M. Sabarsky, An update on the global consortia, 5th Algae Biomass Summit: Algae Biomass Summit Plenary Panel, Minneapolis, USA.(2011.10.26.).
  • Chen C.Y., X.Q. Zhao, H.W. Yen, S.H. Ho, C.L. Cheng, D.J. Lee, F.W. Bai, J.S. Chang, 'Microalgae-based carbohydrates for biofuel production, "Biochemical Engineering Journal", 78 (2013) 1-10.
  • Cheng Y.L., Y.C. Juang, P.W. Tsai, S.H. Ho, C.Y. Chen, J.S. Chang, W.M. Chen, J.M. Liu, D.J. Lee,. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation, "Bioresour. Technol.", 102 (2011) 82-87.
  • Chisti Y., 2007. Biodiesel from microalgae, "Biotechnol. Adv.", 25, 294-306.
  • Chisti Y., Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants? "Trends Biotechnol.", 26:7 (2008) 351-352.
  • Doucha J., F. Straka, K. Lívanský, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, "J Appl Phycol.", 17 (2005) 403-412.
  • Ekman A., P. Börjesson, Life cycle assessment of mineral oil-based and vegetable oil-based hydraulic fluids including comparison of biocatalytic and conventional production methods, "Int. J. Life Cycle Assess.", 16 (2011)297-305.
  • Franz A., F. Lehr, C. Posten, G. Schaub, Modeling microalgae cultivation productivities in different geographic locations - estimation method for idealized photobioreactors, "Biotechnology Journal", 7:4 (2012) 546-557.
  • Gan Y., C. Liang, W. May, S.S. Malhi, J. Niu, X. Wang,. Carbon footprint of spring barley in relation to preceding oilseeds and N fertilization, "Int. J. Life Cycle Assess", 17 (2012) 635-645.
  • Gao K.S., Y.P. Wu, G. Li, H.Y. Wu, V.E. Villafane, E.W. Helbling,. Solar UV radiation drives CO2 fixation in marine phytoplankton: A doubleedgedsword, "Plant Physiol.", 144:1 (2007), 54-59.
  • Goldemberg J., Ethanol for a sustainable energy future, "Science", 315 (2007) 808-810.
  • Haro P., F. Trippe, R. Stahl, E. Henrich, Bio-syngas to gasoline and olefins via DME - A comprehensive techno-economic assessment, "Appl. Energy", 108 (2013) 54-65.
  • Himmel M.E., S.Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, T.D. Foust, Biomass recalcitrance: engineering plants and enzymes for biofuels production, "Science", 315 (2007) 804-807.
  • Ho S.H., C.Y. Chen, D.J. Lee, J.S. Chang, Perspectives on microalgal CO2- emission mitigation systems - a review, "Biotechnol. Adv.", 29 (2011) 189-198.
  • http://cellana.com/
  • http://solazyme.com/solutions/fuel/?lang=en
  • http://www.algenol.com/
  • http://www.ethanolrfa.org/pages/ethanol-facts-environment
  • http://www.fortum.com/en/energy-production/fuels/pages/default.aspx
  • http://www.greenfuelnordic.fi/en/page/2
  • http://www.st1.eu/
  • http://www.upm.com/en/Pages/default.aspx
  • http://www.vapo.fi/en
  • IEA, 2010. Sustainable Production of Second-Generation Biofuels (Report). http://www.iea.org/papers/2010/second generation biofuels.pdf.
  • Iglesias L., A. Laca, M. Herrero, M. Díaz,. A life cycle assessment comparison between centralized and decentralized biodiesel production from raw sunflower oil and waste cooking oils, "J.Clean. Prod.", 3 (2012) 162-171.
  • Janvanmardian M., B.O. Palsson, High density photoautotrophic algal cultures: design, construction and operation of a novel photobioreactor system, "Biotechnol. Bioeng.", 38 (1991) 1182-1189.
  • Jena U., K.C. Das, J.R. Kastner, Effect of operating conditions thermochemical liquefaction on biocrude production from Spirulina platensis, "Bioresour. Technol." 102:10 (2011) 6221-6229.
  • Kajaste R., Chemicals from biomass - managing greenhouse gas emissions in biorefinery production chains a review, "Journal of Cleaner Production", 75 (2014) 1-10.
  • Kamm B., M. Kamm Principles of biorefineries, "Appl Microbiol Biotechnol", 64 (2004) 137-145.
  • Koponen K., S. Soimakallio, E. Tsupari, R. Thun, R. Antikainen, GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria, "Appl. Energy" 102 (2013) 440-448.
  • Kumar A., S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, "Trends in Biotechnology", 28:7(2010) 371-380.
  • Kwietniewska E., J. Tys, I. Krzemińska, W. Kosieł, 2012 Microalgae - cultivation and application of biomass as a source of energy: a review, "Acta Agrophysica monographiae", 2 (2012) 1-108.
  • Lammens T.M., M.C.R. Franssen, E.L. Scott, J.P.M. Sanders, Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals, "Biomass Bioenergy", 44(2012) 168-181.
  • Lee Y.K., Heterotrophic carbon nutrition. In: Handbook of microalgal culture: biotechnology and applied phycology (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK, 2004 116-124.
  • Mascarelli A., Gold rush for algae, "Nature", 461(2009) 460-461.
  • Masojidek J., M. Koblizek, G. Torzillo, Photosynthesis in microalgae, pp.20-39, in: Handbook of microalgal culture: Biotechnology and Applied Phycology (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK. 2004.
  • Mata T.M., A.A. Martins, N.S. Caetano,. Microalgae for biodiesel production and other applications: a review, "Renewable and Sustainable Energy Reviews", 14 (2010) 217-232.
  • Matsumoto M., Y. Hiroko, S. Nobukazu, O. Hiroshi, M. Tadashi, Saccharification of marine microalgae using marine bacteria for ethanol production, "Appl. Bioch. Biotech.",105 (2003) 247-254.
  • Meli K., M. Hurme, Evaluation of lignocellulosic biomass upgrading routes to fuels and chemicals, "Cellul. Chem. Technol.", 44:4-6 (2010) 117-137.
  • Melis A., Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency, "Plant. Sci.", 177:4 (2009) 272-280.
  • Minowa T., S. Sawayama, A novel microalgal system for energy production with nitrogen cycling, "Fuel", 78(1999)1213-1215.
  • Morais M.G. de, J.A.V. Costa, Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, "J. Biotechnol.", 129 (2007) 439-445.
  • Mussgnug J.H., V. Klassen, A. Schlüter, O. Kruse, Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, "Journal of Biotechnology", 150 (2010) 51-56.
  • Naylor R.L., A.J. Liska, M.B. Burke, W.P. Falcon, J.C. Gaskell, S.D. Rozelle, K.G. Cassman, The ripple effect: biofuels, food security, and the environment, "Environment", 49 (2007) 30-43.
  • NREL, 2014. http://www.nrel.gov/biomass/ integrated _biorefinery.html.
  • Nzihou A., G. Flamant, B. Stanmore,. Synthetic fuels from biomass using concentrated solar energy e a review, "Energy", 42 (2012) 121-131.
  • Olguín E.J., S. Galicia, G. Mercado, T. Pérez,. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions, "Journal of Applied Phycology", 15:2(2003), 249-257.
  • Reynolds C.S., The ecology of phytoplankton. Cambridge University Press, UK, 2006.
  • Schenk P.M., S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, B. Hankamer, Second generation biofuels: high-efficiency microalgae for biodiesel production, "BioEnergy Research", 1 (2008)20-43.
  • Stephens E., I.L. Ross, Z. King, J.H. Mussgnug, O. Kruse, C. Posten, M.A. Borowitzka, B. Hankamer, An economic and technical evaluation of microalgal biofuels, "Nat. Biotechnol.", 28:2 (2010)126-128.
  • Stephens E., L. Wagner, I.L. Rossand, B. Hankamer, Microalgal production systems: Global impact of industry scale-up, in: C. Postenand, C. Walter, (Eds.) Microalgal Biotechnology: Integration and Economy, De Gruyter, Berlin, 2012
  • Waltz E., Biotech's green gold? "Nat. Biotechnol.", 27:1 (2009) 15-18.
  • Wang C., A. Thygesen, Y. Liu, Q. Li, M. Yang, D. Dang, Z. Wang, Y. Wan., W. Lin, J. Xing, Bio-oil based biorefinery strategy for the production of succinic acid, "Biotechnol. Biofuels", 6:74 (2013) 1-10.
  • Weyer K.M., D.R. Bush, A. Darzins, B.D. Wilson, Theoretical maximum algal oil production, "Bioenergy.Res.", 3:2 (2010) 204-213.
  • Wilhelm C., T. Jakob From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances, "Appl. Microbiol. Biotechnol.", 92:5(2011) 909-919.
  • Williams P.J. le. B., L.M.L. Laurens, Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics, "Energy Environ.Sci.", 3:5 (2010) 554-590.
  • Yao K., C. Tang, Controlled polymerization of next-generation renewable monomers and beyond, "Macromolecules", 46:5 (2013) 1689-1712.
  • Zhu X.G., S.P. Long, D.R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? "Curr. Opin. Biotechnol.", 19:2 (2008) 153-159.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171427953

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.