PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 4 | nr 1 | 24--34
Tytuł artykułu

Using radar interferometry and SBAS technique to detect surface subsidence relating to coal mining in Upper Silesia from 1993-2000 and 2003-2010

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the presented research ERS1-2 and Envisat ASAR archive data were used for the periods 1993 - 2000 and 2003 - 2010. The radar images were acquired over Upper Silesia in southern Poland. DinSAR (Differential InSAR) and SBAS (Small Baseline Subset) methods were applied for the detection of the most subsided areas. The DinSAR images were layer stacked for an image using 26 interferometry pairs of ERS1-2 SAR and 16 pairs from Envisat ASAR images in an ascending-descending orbit combination. The stacking of these images showed the most subsided parts of these cities even under low coherent areas, but the results are less precise. In the Upper Silesian Coal Basin, intensive underground coal exploitation has resulted in several surface deformations under Bytom (~8-17 km2), Piekary Śląskie (~9-15 km2), Ruda Śląska (~32-42 km2) and Katowice (~20-23 km2) with 25-40 cm of subsidence (in general) in the studied time periods. The SBAS technique has also shown that coal mining caused subsidence in the cities of Bytom, Katowice, and Piekary Śląskie of 5-7 cm/yr. The presented SBAS method did not work for low coherent areas, e.g. dense forested areas. DInSAR data also pointed to several decreasingly less active mining areas, which relate to the mine closures in Bytom and Ruda Śląska, which is also verified by the time series analysis.(original abstract)
Rocznik
Tom
4
Numer
Strony
24--34
Opis fizyczny
Twórcy
  • University of Silesia in Katowice, Sosnowiec, Poland
Bibliografia
  • Bateson L., Cigna F., Boon D., Sowter A. 2015. The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. Geoinf., 34: 249-257.
  • Berardino P., Fornaro G., Lanari R., Sansoti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. Remote Sens., 40, 11: 2375-2383.
  • Cabala J.M., Cmiel S.R. 1999. Dynamics of ground surface deformation caused by mining in the period 1973-97 in USCB on the example of Kazimierz trough. Documenta Geonica of Akademy of Sciences of Czech Republic, Proc. 2 Czech-Polish Geomechanical Symp., Prague: 243-252.
  • Cabala J.M., Cmiel S.R., Idziak A.F. 2004. Environmental impact of mining activity in the Upper Silesian Coal Basin (Poland). Geol. Belg., 7, 3-4: 225-229.
  • Caduff R., Schlunegger F., Kos A., Wiesmann A. 2014. A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf. Process. Landf. (wileyonlinelibrary.com) doi: 10.1002/esp.3656.
  • Carnec C., Delacourt C. 2000. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France. J. App. Geop., 43: 43-54.
  • Chan Y. K., Koo V. C. 2008. An introduction to synthetic aperture radar (SAR). Progress in Electromagnetics Res., B, 2: 27-60.
  • Colesanti C., Ferreti A., Prati C., Rocca F. 2001. Comparing GPS, optical levelling and permanent scatterers. Proc. IGARSS'01, Sydney, Australia. IEEE Intl. Geosci. Remote Sens. Symp., 6: 2622-2624.
  • Costantini M., Rosen P.A. 1999. A generalized phase unwrapping approach for sparse data. In IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Hamburg (Germany), June 1999: 267-269.
  • Crosetto M. 2002. Calibration and validation of SAR interferometry for DEM generation. ISPRS J. Photogramm. Remote Sens. 57: 213-227.
  • Crosetto M., Monserrat O., Jungner A., Crippa B. 2009. Persistent Scatter Interferometry: Potential and limits. WG I/2, I/4, IV/2, IV/3, VII/2 ISPRS Hannover Workshop 2009. High-Resolution Earth Imaging for Geospatial Information June 2-5, 2009 Hannover, Germany. Available from: http://www.isprs.org/proceedings/XXXVIII/1_4_7 W5/paper/Crosetto-136.pdf.
  • Del Ventisette C., Ciampalini A., Manunta M., Calò F., Paglia L., Ardizzone F., Mondini A.C., Reichenbach P., Mateos R.M., Bianchini S., Garcia I., Füsi B., Deák Zs.V., Rádi K., Graniczny M., Kowalski Z., Piatkowska A., Przylucka M., Retzo H., Strozzi T., Colombo D., Mora O., Sánchez F., Herrera G., Moretti S., Casagli N., Guzzetti F. 2013. Exploitation of Large Archives of ERS and ENVISAT C-Band SAR Data to Characterize Ground Deformations. Remote Sens. 5/8: 3896-3917. doi: 10.3390/rs5083896.
  • Domagała I. 2013. Raport o Stanie Miasta Bytom 2012. Urząd Miasta Bytom. Bytom, Poland: 124-126.
  • Domagała I. 2014. Raport o Stanie Miasta Bytom 2013. Urząd Miasta Bytom. Bytom, Poland: 134-137.
  • Domagała I. 2015. Raport o Stanie Miasta Bytom 2014. Urząd Miasta Bytom. Bytom, Poland: 139-142.
  • Engelbrecht J., Inggs M. 2013. Differential interferometry techniques on L-band data employed for the monitoring of surface subsidence due to mining. S. Afr. J. Geomatics, 2: 82-93.
  • Exelis (Visual Information Solutions) 2015. Available from: http://www.exelisvis.com/Learn/EventsTraining/Tradeshows/GEOINT/TabId/1019/ArtMID/3554/userid/77915/ArticleID/4316/Refinement-step-and-GCP-collection-for-SARscape-Interferometry-.aspx
  • Fernandez J., Tizanni P., Manzo M., Borgia A., Gonzalez P. J., Marti J., Pepe A., Camacho A.G., Casu F., Berardino P., Prieto J.F., Lanari R. 2009. Gravity-driven deformation of Tenerife measured by InSAR time series analysis. Geophys. Res. Lett., 36: p. L04306.
  • Graniczny M., Bovenga F., Kowalski Z., Perski Z., Piątkowska A., Surała M., Uścinowicz Sz., Wasowski J., Zdanowski A. 2011. Problematyka wykorzystania interferometrii satelitarnej w badaniach geologicznych. Biul. Państ. Inst. Geol., 446: 53-64.
  • Graniczny M., Czarnogórska M., Kowalski Z., Leśniak A., Jureczka J. 2008. Metoda punktowej, długookresowej satelitarnej interferometrii radarowej (PSInSARTM) w rozpoznaniu geodynamiki NE części Górnośląskiego Zagłębia Węglowego. Prz. Geol., 56: 826-835.
  • Graniczny M., Kowalski Z., Jureczka J., Czarnogórska M. 2006. Wykorzystanie technologii PSinSAR dla obserwacji przemieszczeń powierzchni terenu na przykładzie Górnego Śląska. Mat. Symp.: 127-129.
  • Herrera G., Fernández M.Á., Tomás R., González-Nicieza C., López-Sánchez J.M., Vigil A.Á. 2012. Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III). Eng. Fail. Anal., 24: 67-76.
  • Hole J.K., Bromley C.J., Stevens N.F., Wadge G. 2007. Subsidence in the geothermal fields of the Taupo Volcanic Zone, New Zealand from 1996 to 2005 measured by InSAR. J. Volcanol. Geoth. Res., 166: 125-146.
  • Hu B., Wang H-S., Sun Y-L., Hou J-G., Liang J. 2014. Long-Term Land Subsidence Monitoring of Beijing (China) Using the Small Baseline Subset (SBAS) Technique. Remote Sens., 6: 3648-3661. doi: 10.3390/rs6053648
  • Jecintha G.A., Mariappan V.E.N. 2011. A study on Tamilnadu coastal deformation processes using SAR Interferometric data. Int. J. Geomat. Geosci., 1, 4: 879-890.
  • Jung H.C., Kim S-W., Jung H-S, Min K.D., Won J-S. 2007. Satellite observation of coal mining subsidence by persistent scatterer analysis. Eng. Geol., 92: 1-13.
  • Klabis L., Kowalski A. 2014. Eksploatacja górnicza w filarze ochronnym dla śródmieścia Bytomia, historia i teraźniejszość. [in:] Proc. V. Konf. nauk.-szkoleniowa GIG, Bezpieczeństwo i ochrona obiektów budowlanych na terenach górniczych, Karpacz, Poland, 15-17 October 2014. Konopko W. 2010. Wydobycie węgla i destrukcja górotworu w Gó
  • rnośląskim Zagłębiu Węglowym. Prz. Górn., 66: 1-10.
  • Lee C-W, Lu Z, Jung, H-S, Won, J-S, Dzurisin D, 2010. Surface deformation of Augustine Volcano, 1992-2005, from multiple-interferogram processing using a refined small baseline subset (SBAS). [in:] Power J.A., Coombs M.L., Freymueller J.T. (eds.) The 2006 eruption of Augustine Volcano, Alaska. U.S. Geol. Surv. Professional Paper 1769: 453-465. [http://pubs.usgs.gov/pp/1769/chapters/p1769_chapter18.pdf].
  • Paradella W.R., Mura J.C., Gama F.F., dos Santos A.R. 2012. Radar interferometry in surface deformation detection with orbital data. Rev. Bras. de Cart. , 64(6): 797-811. Sociedade Brasileira de Cartografia, Geodésia, Fotogrametria e Sensoriamento Remoto ISSN: 1808-0936.
  • Peltier A., Bianchi M., Kaminski E., Komorowski J.-C., Rucci A., Staudacher T. 2010. PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophys. Res. Lett., 37(12), L12301. doi:10.1029/2010GL043846.
  • Perski Z. 2000. The interpretation of ERS-1 and ERS-2 Insar data for the mining subsidence monitoring in Upper Silesian Coal Basin, Poland. Work. Group VII/6, IAPRS, Vol. XXXIII, Amsterdam, 2000.
  • Perski Z., Jura D. 1999. ERS SAR Interferometry for Land Subsidence Detection in Coal Mining Areas. Earth Observ. Quart., 63: 25-29.
  • Pratti C., Rocca F., Guarnieri A.M., Pasquali P. 1994. Report on ERS-1 SAR interferometric techniques and applications. ESA report 10179/93/YT/I/SC: 122.
  • Przyłucka M., Herrera G., Graniczny M., Colombo D., Béjar-Pizarro M. 2015. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens., 7, 5300-5328. doi: 10.3390/rs70505300.
  • Raucoules D., Bourgine B., de Michele M., Le Cozannet G., Closset L., Bremmer C., Veldkamp H., Tragheim D., Bateson L., Crosetto M., Agudo M., Engdahl M. 2009. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. J. Appl. Geop., 68: 335-347.
  • Raucoules R., Colesanti C., Carnec C. 2007. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geosci., 339: 289-302.
  • Shanker P., Casu F., Zebker H.A., Lanari R. 2011. Comparison of Persistent Scatterers and Small Baseline Time-Series InSAR Results: A Case Study of the San Francisco Bay Area. IEEE Geosci. Remote Sens. Lett., 8, 4: 592-596.
  • Skrzypczyk-Kogut B. 2011. Raport o Stanie Miasta Bytom 2010. Urząd Miasta Bytom. Bytom, Poland: 84-87.
  • Skrzypczyk-Kogut B. 2012. Raport o Stanie Miasta Bytom 2011. Urząd Miasta Bytom. Bytom, Poland: 120-123.
  • Tomás R., Romero R., Mulas J., Marturià J.J., Mallorquí J.J., Lopez-Sanchez J.M., Herrera G., Gutiérrez F., González P.J., Fernández J., Duque S., Concha-Dimas A., Cocksley G., Castañeda C., Carrasco D., Blanco P. 2014. Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environ. Earth Sci., 71: 163-181.
  • Trasatti E., Casu F., Giunchi C., Pepe S., Solaro G., Tagliaventi S., Berardino P., Manzo M., Pepe A., Ricciardi G.P., Sansosti E., Tizzani P., Zeni G., Lanari R. 2008. The 2004-2006 uplift episode at Campi Flegrei caldera (Italy): Constraints from SBAS-DInSAR ENVISAT data and Bayesian source Inference, Geophys. Res. Lett., 35, p.L07308.
  • Wegmüller U., Werner C., Strozzi T., & Wiesmann A. 2004. Monitoring mining induced surface deformation. [in:] Geosci. Remote Sens. Symp., 2004. IGARSS'04. Proc. 2004 IEEE Int., 3: 1933-1935.
  • Wojciechowski T. 2006. The Dynamics of Mining Subsidence in Knurow Area in Poland Derived from SAR Interferometry and Topographic Data. European Space Agency - Publ. - ESA Sp, 610, P35 Fringe-Workshop, Fringe.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171434484

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.