PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | nr 16 | 48--55
Tytuł artykułu

Potential of low concentration nanofluids in heat transfer

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of conducted studies was recognition of low concentration nanofluid under the influence of magnetic field potential applications. The investigations are having fundamental character but Authors keep in mind better energy utilization through the heat transfer enhancement. The examined fluid was composed of water and Cu/CuO nanoparticles. Three temperature differences were imposed on the system. The results did not give unequivocal answer on possible utilization of studied phenomena, but there is open scene for the studies of particle-fluid interaction and flow structure. The main conclusion is that the magnetic properties of base fluid and particles are crucial for such analysis. (original abstract)
Czasopismo
Rocznik
Numer
Strony
48--55
Opis fizyczny
Twórcy
  • AGH University of Science and Technology Kraków, Poland
  • AGH University of Science and Technology Kraków, Poland
Bibliografia
  • Bednarz T. P., C. Lei, J. C. Patterson, H. Ozoe, Enhancing natural convection in a cube using a strong magnetic field - Experimental heat transfer rate measurements and flow visualization, "Int. Commun. Heat Mass Transf.", vol. 36, no. 8 (2009) 97-102.
  • Bednarz T., E. Fornalik, H. Ozoe, J. S. Szmyd, J. C. Patterson, and C. Lei, Influence of a horizontal magnetic field on the natural convection of paramagnetic fluid in a cube heated and cooled from two vertical side walls, "Int. J. Therm. Sci.", vol. 47, no. 6 (2008) 668-679.
  • Bednarz T., E. Fornalik, T. Tagawa, H. Ozoe, and J. S. Szmyd, Experimental and numerical analyses of magnetic convection of paramagnetic fluid in a cube heated and cooled from opposing verticals walls, "Int. J. Therm. Sci.", vol. 44, no. 10 (2005) 933-943.
  • Choi S. U.S., J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, 1995.
  • Fornalik E., Magnetic convection of paramagnetic fluid in an enclosure, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, 2009.
  • Fornalik E., P. Filar, T. Tagawa, H. Ozoe, J. S. Szmyd, Effect of a magnetic field on the convection of paramagnetic fluid in unstable and stable thermosyphon-like configurations, "Int. J. Heat Mass Transf.", vol. 49, no. 15-16 (2006) 2642-2651.
  • He Y., Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behaviour of aqueous suspensions of Ti02 nanoparticles (nanofluids) flowing upward through a vertical pipe, "Int. J. Heat Mass Transf.", vol. 50, no. 11-12, pp. 2272-2281, 2007.
  • http://www.fftw.org/.
  • Ijam A., R. Saidur, Nanofluid as a coolant for electronic devices (cooling of electronic devices), "Appl. Therm. Eng.", 32 (2012) 76-82.
  • Khanafer K., K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, "Int. J. Heat Mass Transf.", vol. 46, no. 19 (2003) 3639-3653.
  • Mahian O., A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, "Int. J. Heat Mass Transf.", vol. 57, no. 2, pp. 582-594, 2013.
  • Mosavian M.T.H., S. Z. Heris, S. G. Etemad, M. N. Esfahany, Heat transfer enhancement by application of nano-powder, "J. Nanoparticle Res.", vol. 12, no. 7 (2010) 2611-2619.
  • Putra N., W.N. Septiadi, R. Sahmura, C.T. Anggara, Application of Al203 Nanofluid on Sintered Copper-Powder Vapor Chamber for Electronic Cooling, "Adv. Mater. Res.", 789 (2013) 423-428.
  • Rasponi M., F. Piraino, N. Sadr, M. Lagana, A. Redaelli, M. Moretti, Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation," Microfluid. Nanofluidics, vol. 10, no. 5 (2010) 1097-1107.
  • Roszko A., E. Fornalik-Wajs, J. Donizak, J. Wajs, A. Kraszewska, L. Pleskacz, Magneto-thermal convection of low concentration nanofluids, "MATEC Web Conf.", vol. 6, no. 18 (2014) 1-8.
  • Shawgo R. S., A. C. Richards Grayson, Y. Li, M. J. Cima, BioMEMS for drug delivery, "Curr. Opin. Solid State Mater. Sci.", vol. 6, no. 4, pp. 329-334, Aug. 2002.
  • Sreenivasan K. R., The passive scalar spectrum and the Obukhov-Corrsin constant, "Phys. Fluids", vol.8, (1996) 189-196.
  • Taylor R., S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: A review of the diverse applications of nanofluids, "J. Applied Physics", vol. 113, no. 1 (2013) p. 011301-011319.
  • Wen D., G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, "Particuology", vol. 7, no. 2 (2009) 141-150.
  • Xuan Y., Q. Li, Heat transfer enhancement of nanofluids, "Int. J. heat fluid flow", 21 (2000) 58-64.
  • Xuan Y., W. Roetzel, Conceptions for heat transfer correlation of nanofluids, "Int. J. Heat Mass Transf.", vol. 43 (2000) 3701-3707.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171428247

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.