PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 3 | 58--65
Tytuł artykułu

Nonenzymatic Browning of Orange Juices During Storage

Autorzy
Warianty tytułu
Nieenzymatyczne brunatnienie soków pomarańczowych podczas przechowywania
Języki publikacji
EN
Abstrakty
EN
The aim of the present study was to determine the effect of storage conditions on non-enzymatic browning of orange juices. The rate of browning was measured by the changes in color parameters of juices (CIE L*a*b*), vitamin C and hydroxymethylfurfural (HMF) content. All analyses were carried out for fresh juices and after storage at 18, 28 and 38°C for 2, 4 and 6 months. It was found that vitamin C in orange juice decreased with increasing time and temperature of storage. After 6 month of storage at 18, 28 and 38°C the content of vitamin C decreased by 32%, 45% and 60%, respectively. No HMF content was detected in fresh juices. The increase of HMF at 38°C was approximately 8.0 and 16.4 times higher than that of 18 and 28°C. HMF concentration of orange juice were found to be increased with an increase in vitamin C degradation. An increase in temperature and time caused a darkening of orange juices which was reflected in the degree of lightness (L*) and increase color total difference (ΔE ). High correlations were found between HMF accumulation and color parameters (ΔL, Δb) and ΔE. (original abstract)
Celem badań było określenie wpływu warunków przechowywania na nieenzymatyczne brązowienie soków pomarańczowych. Stopień brązowienia zmierzono na podstawie zmian parametrów barwy soków (CIE L*a*b*) oraz zawartości witaminy C i hydroksymetylofurfuralu (HMF). Wszystkie analizy przeprowadzono dla świeżego soku i po przechowywaniu w 18, 28 i 38°C przez 2, 4 i 6 miesięcy. Stwierdzono, że witamina C w soku pomarańczowym zmniejszała się wraz ze wzrostem czasu i temperatury przechowywania. Po 6 miesiącach przechowywania w temperaturze 18, 28 i 38°C zawartość witaminy C obniżyła się odpowiednio o 32%, 45% i 60%. W świeżych sokach nie wykryto zawartości HMF. Wzrost HMF w 38°C był około 8,0 i 16,4 razy większy niż w 18 i 28°C. Stwierdzono, że stężenie HMF soku pomarańczowego wzrasta wraz ze wzrostem degradacji witaminy C. Wzrost temperatury i czasu spowodował brunatnienie soków pomarańczowych, co spowodowało spadek stopnia jasności (L *) i zwiększenie całkowitej różnicy barw (ΔE). Stwierdzono wysoką korelację między akumulacją HMF a parametrami barwy (ΔL, Δb) i ΔE. (abstrakt oryginalny)
Rocznik
Numer
Strony
58--65
Opis fizyczny
Twórcy
  • Poznan University of Economics and Business
Bibliografia
  • [1] Włodarska K., Pawlak-Lemańska K., Górecki T., Sikorska E. (2019) Factors influencing consumers' perceptions of food: A study of apple juice using sensory and visual attention methods. Foods, 8, (545), 1-13.
  • [2] Klimczak I., Małecka M., Szlachta M. and Gliszczyńska-Świgło A. (2007) Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices, Journal of Food Composition and Analysis, 20, 313-322.
  • [3] Damasceno L.F., Fernandes F.A.N., Magalhães M.A.A., Brito E.S. (2008) Non-enzymatic browning in clarified cashew apple juice during thermal treatment: kinetics and process control. Food Chemistry, 106, 172-179.
  • [4] Klimczak I., Małecka M. (2011) Evaluation of sensory profile and p-vinylguaiacol (PVG) content in orange juices during storage at different temperature. Journal of Food Quality, 34, 30-39.
  • [5] Lee H.S., Nagy S. 1988. Quality changes and nonenzymic browning intermediates in grapefruit juice during storage. Journal of Food Science, 53, 168-172.
  • [6] Wibowo S., Grauwet T., Santiago J.S., Tomic J., Vervoort L., Hendrickx M., Van Loey A. (2015) Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to color instability. Food Chemistry, 15, 140-151.
  • [7] Bharate S.S., Bharate S.B. (2014) Non-enzymatic browning in citrus juice: chemical markers, their detection and ways to improve product quality. Journal of Food Science and Technology, 51 (10), 2271-2288.
  • [8] Randhawa M.A., Javed M.S., Ahmad Z., Amjad A., Khan A.A., Sharp F., Filza F. (2019) Amassing of hydroxymethylfurfural, 2-furfural and 5-methylfurfural in orange (Citrus reticulata) juice during storage. Food Science and Technology, 40 (2), 382-386.
  • [9] Pham H.T.T., Bazmawe M., Kebede B., Buvé C., Hendrickx M.E., Van Loey A.M. (2019) Changes in the soluble and insoluble compounds of shelf-stable orange juice in relation to non-enzymatic browning during storage. Journal of Agricultural and Food Chemistry, 67, 12854-12862.
  • [10] Pham, H.T.T., Bista A., Kebede B., Buvé C., Hendrickx M., Van Loey A. (2020) Insight into non-enzymatic browning of shelf-stable orange juice during storage: A fractionation and kinetic approach. Journal of Science and Food Agriculture, 100 (9), 3765-3775.
  • [11] Kabasakalis V., Siopidou D., Moshatou E. (2000) Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chemistry, 70, 325-328.
  • [12] Zhang J., Han H., Xia J., Gao M. (2016) Degradation kinetics of vitamin C in orange and orange juice during storage Advanced Journal of Food Science and Technology, 12 (10), 555-561.
  • [13] Roig M.G., Bello J.F., Rivera Z.S., Kennedy J.F. (1999) Studies on the occurrence of non-enzymatic browning during storage of citrus juice. Food Research International, 32, 609-619.
  • [14] Aslanova D., Bakkalbasi E., Artik N. (2010) Effect of storage on 5-hydroxymethyl-furfural (HMF) formation and color change in jams. International Journal of Food Properties, 13, 904-912.
  • [15] Capuano E., Fogliano V. (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Science and Technology, 44, 793-810.
  • [16] PN-A-04019:1998. Produkty spożywcze. Oznaczanie zawartości witaminy C.
  • [17] Nisperos-Carriedo O.M., Busling S.B., Shaw E.P. (1992) Simultaneous detection of dehydroascorbic, ascorbic, and some organic acids in fruits and vegetables by HPLC. Journal of Agricultural and Food Chemistry, 40, 1127-1130.
  • [18] Cserhalmi Z., Sass-Kiss A., Toth-Markus M., Lechner N. (2006) Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7, 49-54.
  • [19] Meydav S., Saguy I., Kopelman I.J. (1977) Browning determination in citrus products. Journal of Agricultural and Food Chemistry, 25, 602-604.
  • [20] Martí N., Mena P., Cánovas J.A., Micol V., Saura D. (2009) Vitamin C and the role of citrus juices as functional food. Natural Product Communications, 4, 1-8.
  • [21] Gliszczyńska-Świgło A., Wróblewska J., Lemańska K., Klimczak I., Tyrakowska B. (2004) The contribution of polyphenols and vitamin C to the antioxidant activity of commercial orange juices and drinks. In: Proceedings of 14th IGWT Symposium Focusing New Century: Commodity-Trade-Environment, China, PP. 121-126.
  • [22] Zvaigzne G., Karklina D. (2013) The effect of production and storage on the content of vitamin C in NFC orange juice. Research for Rural Development, 1, 131-135.
  • [23] Arena E., Fallico B., Maccarone E. (2001) Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chemistry, 74, 423-427.
  • [24] Koca N, Burdurlu H.S., Karadenus F. (2003) Kinetics of nonenzymatic browning reaction in citrus juice concentrates during storage. Turkish Journal of Agriculture and Forestry, 27, 907-916.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171629310

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.