PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | nr 39 | 32--51
Tytuł artykułu

Znaczenie i wykorzystanie białkowych składników serwatki

Treść / Zawartość
Warianty tytułu
Importance and Application of Whey Protein Components
Języki publikacji
PL
Abstrakty
W serwatce, pozostającej jako produkt uboczny po skoagulowaniu kazeiny mleka w procesie produkcji serów, występuje wiele różnorodnych białek, które nie tylko wyróżniają się wysoką wartością odżywczą, ale przejawiają też atrakcyjne właściwości funkcjonalne oraz biologiczne. W artykule przedstawiono właściwości i kierunki wykorzystania najważniejszych białek serwatkowych, w tym: β-laktoglobuliny, α-laktoalbuminy, immunoglobulin, albuminy serum, laktoferyny, laktoperoksydazy, lizozymu, osteopontyny i glikomakropeptydu oraz produktów ich modyfikacji.(abstrakt oryginalny)
EN
In whey remaining as a by-product after milk casein coagulation during cheese production, there are a number of various proteins that are distinguished not only by their high nutritional value, but also exhibit attractive functional and biological properties. This article presents the properties and application of most important whey proteins, including: β-lactoglobulin, α-lactalbumin, immunoglobulins, serum albumin, lactoferrin, lactoperoxidase, lysozyme, osteopontin and glycomacropeptide, and products of their modification(original abstract)
Słowa kluczowe
Rocznik
Numer
Strony
32--51
Opis fizyczny
Twórcy
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
autor
  • Uniwersytet Przyrodniczy we Wrocławiu
Bibliografia
  • Adams, R. L. i Broughton, K. S. (2016). Insulinotropic Effects of Whey: Mechanisms of Action, Recent Clinical Trials, and Clinical Applications. Annals of Nutrition and Metabolism, 69, 56-63. DOI:10.1159/000448665
  • Agostoni, C. V., Bresson, J. L., Fairweather-Tait, S., Flynn, A., Golly, I., Korhonen, H., Lagiou, P., Løvik, ..., Verhagen, H. (2012). Scientific Opinion on Bovine Lactoferrin. EFSA Journal, 10(5), 2701. DOI:10.2903/j.efsa.2012.2811
  • Amirani, E., Milajerdi, A., Reiner, Ž., Mirzaei, H., Mansournia, M. A. i Asemi, Z. (2020). Effects of Whey Protein on Glycemic Control and Serum Lipoproteins in Patients with Metabolic Syndrome and Related Conditions: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Lipids in Health and Disease, 19(1), 1-18.
  • Artym, J. (2012). Laktoferyna - niezwykłe białko. Wydawnictwo BORGIS.
  • Artym, J. i Zimecki, M. (2005). The Role of Lactoferrin in the Proper Development of Newborns. Postępy Higieny i Medycyny Doświadczalnej, 59, 421-432.
  • Artym, J. i Zimecki, M. (2013). Milk-derived Proteins and Peptides in Clinical Trials. Postępy Higieny i Medycyny Doświadczalnej, 67, 800-816.
  • Artym, J. i Zimecki, M. (2020). Beneficial Effect of Lactoferrin on the Microbiota from Gastrointestinal Tract. Postępy Mikrobiologii, 59, 277-290.
  • Babij, K., Dąbrowska, A., Szołtysik, M., Pokora M., Zambrowicz A. i Chrzanowska J. (2014). The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics, 20(4), 483-491.
  • Barbana, C., Sánchez, L. i Pérez, M. D. (2011). Bioactivity of α-Lactalbumin Related to its Interaction with Fatty Acids: A Review. Critical Reviews in Food Science and Nutrition, 51(8), 783-794. DOI:10.1080/10408398.2010.481368
  • Batista, M. A., Campos, N. C. A. i Silvestre, M. P. C. (2018). Whey and Protein Derivatives: Applications in Food Products Development, Technological Properties and Functional Effects on Child Health. Cogent Food & Agriculture, 4(1), 1509687.
  • Bell, S. J. (2000). Whey Protein Concentrates with and without Immunoglobulins: A Review. Journal of Medicinal Food, 3, 1-13.
  • Berkhout, B., Floris, R., Recio, I. i Visser, S. (2004). The Antiviral Activity of the Milk Protein Lactoferrin against the Human Immunodeficiency Virus Type 1. BioMetals, 17, 291-294. doi.org/10.1023/B:BIOM.0000027707.82911.be
  • Bossios, A., Theodoropoulou, M., Mondoulet, L., Rigby, N. M., Papadopoulos, N. G., Bernard, H. i Papageorgiou, P. (2011). Effect of Simulated Gastro-Duodenal Digestion on the Allergenic Reactivity of Beta-Lactoglobulin. Clinical and Translation Allergy, 1(1), 1-11. DOI:10.1186/2045-7022-1-6
  • Boye, J. I., Ma, C. Y. i Ismail, A. (2004). Thermal Stability of β-lactoglobulins A and B: Effect of SDS, Urea, Cysteine and N-ethylmaleimide. Research Journal of Dairy Science, 71, 207-215. DOI:10.1017/S0022029904000184
  • Brandelli, A., Folmer Corrêaa, A. P. i Daroit, D. J. (2015). Whey as a Source of Peptides with Remarkable Giological Activities. Food Research International, 73, 143-161.
  • Brody, E. P. (2000). Biological Activities of Bovine Glycomacropeptide. British Journal of Nutrition, 84, 39-46.
  • Broersen, K. (2020). Milk Processing Affects Structure, Bioawilability and Immunogenicity of β-lactoglobulin. Foods, 9(874).
  • Bruck, W. M., Gibson, G. R. i Bruck, T. B. (2014).The Effect of Proteolysis on the Induction of Cell Death by Monomeric Alpha Lactalbumin. Biochimie, 97, 138-143.
  • Bruni, N., Capucchio, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., Corona, A. i Dosio, F. (2016). Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine. Molecules, 21(6), 752.
  • Castro, S. L., Samaniego-Barrón, L., Serrano-Rubio, L. E., Ceballos-Olivera, I., Avalos-Gómez, C. i de la Garza, M. (2017). Lactoferrin: A Powerful Antimicrobial Protein Present in Milk. Advances in Dairy Research Journal, 5(195), 2. DOI:10.4172/2329-888X.1000195
  • Cerecedo, I., Zamora, J., Shreffler, W. G., Lin, J., Bardina, L., Dieguz, M. C., Wang, J., Muriel, A., De La Hoz, B. i Sampson, H. A. (2008). Mapping of the IgE and IgG Sequential Epitopes of Milk Allergens with a Peptide Microarray-based Immunoassay. Journal of Allergy and Clinical Immunology, 122, 589-594.
  • Chatterton, D. E., Smithers, G., Roupas, P. i Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin - Technological Implications for Processing. International Dairy Journal, 16(11), 1229-1240. DOI:10.1016/j.idairyj.2006.06.001
  • Chen, W. C., Huang, W. C., Chiu, C. C., Chang, Y. K. i Huang, C. C. (2014). Whey Protein Improves Exercise Performance and Biochemical Profiles in Trained Mice. Medicine & Science in Sports & Exercise, 46(8), 1517-1524. https://doi.org/10.1249/MSS.0000000000000272
  • Cicero, A. F. G., Fogacci, F. i Colletti, A. (2017). Potential Role of Bioactive Peptides in Prevention and Treatment of Chronić Desease: A Narrative Review. British Journal of Pharmacology, 174, 1378-1394.
  • Clare, D. A. i Swaisgood, H. E. (2000). Bioactive Milk Peptides: A Prospectus. Journal of Dairy Science, 83, 1187-1195.
  • Cong, Y. i Linfeng, L. (2012). Identification of the Critical Amino Acid Residues of Immunoglobuline E and Immunoglobuline G Epitopes in β-lactoglobuline by Alanine Scanning Analysis. Journal of Dairy Science, 95, 6307-6312.
  • Cong, Y., Shengyun, Z. i Linfeng, L. (2016). Identification of the Critical Amino Acid Residues of Immunoglobuline E and Immunoglobuline G Epitopes in α-lactalbumin by Alanine Scanning Analysis. Journal of Food Science, 81, 2597-2603.
  • Córdova-Dávalos, L. E., Jiménez, M. i Salinas, E. (2019). Glycomacropeptide Bioactivity and Health: A Review Highlighting Action Mechanisms and Signaling Pathways. Nutrients, 11(598), DOI:10.3390/nu11030598 2019
  • Costa, C., Azoia, N.G., Coelho, L., Freixo, R., Batista, P. i Pintado, M. (2021). Proteins Derived from the Dairy Losses and By-Products as Raw Materials for Non-Food Applications. Foods, 10(1), 135. https://doi.org/10.3390/foods10010135
  • de Andrade, F. B., de Oliveira, J. C., Yoshie, M. T., Guimarães, B. M., Gonçalves, R. B. i Schwarcz, W. D. (2014). Antimicrobial Activity and Synergism of Lactoferrin and Lysozyme against Cariogenic Microorganisms. Brazilian Dental Journal, 25(2), 165-169. DOI:10.1590/0103-6440201302257
  • de Boer, R. (2014). From Milk by-Products to Milk Ingredients: Upgrading the Cycle. John Wiley & Sons, Incorporated.
  • Delgado, Y., Morales-Cruz, M., Figueroa, C. M., Hernández-Román, J., Hernández, G. i Griebenow, K. (2015). The Cytotoxicity of BAMLET Complexes is Due to Oleic Acid and Independent of the α-lactalbumin Component. FEBS Open Bio, 5, 397-404. DOI:10.1016/j.fob.2015.04.010
  • Demmelmair, H., Prell, C., Timby, N. i Lönnerdal, B. (2017). Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants. Nutrients, 9(8), 817. DOI:10.3390/nu9080817
  • Denhardt, D. T. i Noda, M. (1998). Osteopontin Expression and Function: Role in Bone Remodeling. Journal of Cellular Biochemistry, 72(S30-31), 92-102.
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2012). Scientific Opinion on Bovine Lactoferrin. EFSA Journal, 10(5), 2701. DOI:10.2903/j.efsa.2012.2811
  • Enomoto, H., Li, C. P., Morizane, K., Ibrahim, H. R., Sugimoto, Y., Ohki, S., Ohtomo, H. i Aoki, T. (2007). Glycation and Phosphorylation of -Lactoglobulin by Dry-Heating: Effect on Protein Structure and Some Properties. Journal of Agricultural and Food Chemistry, 55, 2392-2398.
  • Expósito, I. L. i Recio, I. (2006). Antibacterial Activity of Peptides and Folding Variants from Milk Proteins. International Dairy Journal, 16(11), 1294-1305. DOI:10.1016/j.idairyj.2006.06.002
  • Fast, J., Mossberg, A. K., Svanborg, C. i Linse, S. (2005). Stability of HAMLET-A Kinetically Trapped α-La Oleic Acid Complex. Protein Science, 14(2), 329-340.
  • Fernando, S. F. i Wooton, B. W. (2010). Quantitation of N-acetylneuraminic (sialic) Acid in Bovine Clycomacropeptide (GMP). Journal of Food Composition and Analysis, 23(4), 359-366.
  • Flemmig, J., Gau, J., Schlorke, D. i Arnhold, J. (2016). Lactoperoxidase as a Potential Drug Target. Expert Opinion on Therapeutic Targets, 20(4), 447-461. DOI:10.1517/14728222.2016.1112378
  • Flower, D. R. (2000). Beyond the Superfamily: The Lipocalin Receptors. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1482(1-2), 327-336. DOI:10.1016/s0167-4838(00)00169-2
  • Fox, P. F. i McSweeney, P. L. (Eds.). (2013). Advanced Dairy Chemistry: Volume 1: Proteins, Parts A&B. Springer, Cork, Ireland.
  • Furmanski, P., Li, Z., Fortuna, M. B., Swamy, C. i Das, M. R. (1989). Multiple Molecular Forms of Human Lactoferrin. Identification of a Class of Lactoferrins that Possess Ribonuclease Activity and Lack Iron-Binding Capacity. Journal of Experimental Medicine, 170, 415-429.
  • Gauthier, S. F., Pouliot, Y. i Saint-Sauveur, D. (2006). Immunomodulatory Peptides Obtained by the Enzymatic Hydrolysis of Whey Proteins. International Dairy Journal, 16, 1315-1323. DOI:10.1016/j.idairyj.2006.06.014
  • Giansanti, F., Panella, G., Leboffe, L. i Antonini, G. (2016). Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals, 9(4), 61. DOI:10.3390/ph9040061
  • Gibbons, J. A., Kanwar, J. R. i Kanwar, R. K. (2015). Iron-free and Iron-saturated Bovine Lactoferrin Inhibit Survivin Expression and Differentially Modulate Apoptosis in Breast Cancer. BMC Cancer, 15, 1-16.
  • Graveland-Bikker, J. F., Fritz, G., Glatter, O. i de Kruif, C. G. (2006). Growth and Structure of A-lactalbumin Nanotubes. Journal of Applied Crystallography, 39, 180-184.
  • Gupta, A., Jadhav, J. B., Gunaware, K. D. i Shinde, B. (2016). Whey Proteins and Its Impact on Human Health Nutrition: Review. Journal of Analytical & Pharmaceutical Research, 3(8), 00083. DOI:10.15406/japlr.2016.03.00083
  • Gupta, G., Prakash, D., Garg, A. P. i Gupta, S. (2012). Whey Proteins: A Novel Source of Bioceuticals. Middle-East. Journal of Scientific Research, 12, 365-375.
  • Hattori, M., Watabe, A. i Takahashi, K. (1995). Beta-lactoglobulin Protects Beta-ionone Related Compounds from Degradation by Heating, Oxidation, and Irradiation. Bioscience, Biotechnology, and Biochemistry, 59(12), 2295-2297.
  • Hiraoka, Y., Segawa, T., Kuwajima, K., Sugai, S. i Murai, N. (1980). Alpha-lactalbumin: A Calcium Metalloprotein. Biochemical and Biophysical Research Communications, 95(3), 1098-1104.
  • Hochwallner, H., Schulmeister, U., Swoboda, I., Spitzauer, S. i Valenta, R. (2014). Cow's Milk Allergy: From Allergens to New Forms of Diagnosis, Therapy and Prevention. Methods, 66(1), 22-33. DOI:10.1016/j.ymeth.2013.08.005
  • Hsieh, M. J., Yang, S. J., Hsieh, Y. S., Chen, T. Y. i Chiou, H. L. (2012). Autophagy Inhibition Enhances Apoptosis Induced by Dioscin in Huh7 Cells. Evidence-Based Complementary and Alternative Medicine, 1-11. DOI:10.1155/2012/134512
  • Hu, Y., Meng, X., Zhang, F., Xiang, Y. i Wang, J. (2021). The in Vitro Antiviral Activity of Lactoferrin Against Common Human Coronaviruses and SARS-CoV-2 is Mediated by Targeting the Heparan Sulfate Co-receptor. Emerging Microbes & Infections, 10(1), 317-330. DOI:10.1080/22221751.2021.1888660
  • Icer, M. A. i Gezmen-Karadag, M. (2018). The Multiple Functions and Mechanisms of Osteopontin. Clinical Biochemistry, 59,17-24. DOI:10.1016/j.clinbiochem.2018.07.003
  • Ipsen, R. i Otte, J. (2007). Self-assembly of Partially Hydrolysed α-lactalbumin. Biotechnology Advances, 25, 602-605.
  • Jiang, R., Liu, L., Du, X. i Lönnerdal, B. (2020). Evaluation of Bioactivities of the Bovine Milk Lactoferrin-Osteopontin Complex in Infant Formulas. Journal of Agricultural and Food Chemistry, 68(22), 6104-6111. DOI:10.1021/acs.jafc.9b07988
  • Kamau, S. M., Cheison, S. C., Chen, W., Liu, X. M. i Lu, R. R. (2010). Alpha-lactalbumin: Its Production Technologies and Bioactive Peptides. Comprehensive Reviews in Food Science and Food Safety, 9(2), 197-212.
  • Kanakis, C. D., Hasni, I., Bourassa, P., Tarantilis, P. A., Polissiou, M. G. i Tajmir-Riahi, H. A. (2011). Milk Beta-lactoglobulin Complexes with Tea Polyphenols. Food Chemistry, 127(3), 1046-1055.
  • Karav, S. (2018). Selective Deglycosylation of Lactoferrin to Understand Glycans' Contribution to Antimicrobial Activity of Lactoferrin. Cellular and Molecular Biology, 64(9), 52-57.
  • Karav, S., German, J. B., Rouquié, C., Le Parc, A. i Barile, D. (2017). Studying Lactoferrin N-Glycosylation. International Journal of Molecular Sciences, 18(4), 870. DOI:10.3390/ijms18040870
  • Kassem, J. M. (2015). Future Challenges of Whey Proteins. International Journal of Dairy Science, 10, 139-159.
  • Kawasaki, Y., Isoda, H., Tanimoto, M., Dosako, S., Idota, T. i Ahiko, K. (1992). Inhibition by Lactoferrin and Kappa-Casein Glycomacropeptide of Binding of Cholera Toxin to its Receptor. Bioscience, Biotechnology, and Biochemistry, 56, 195-198.
  • Kawashima, M., Kawakita, T., Inaba, T., Okada, N., Ito, M., Shimmura, S., Watanabe, M., Shinmura, K. i Tsubota, K. 2012. Dietary Lactoferrin Alleviates Age-Related Lacrimal Gland Dysfunction in Mice. PLoS ONE, 7(3), e33148.
  • Khan, S. H. (2013). Whey Protein Hydrolysates: Techno-functional Perspective. International Journal of Applied Biology and Pharmaceutical Technology, 4, 1-3.
  • Khan, U. M. i Selamoglu, Z. (2019). Nutritional and Medical Perspectives of Whey Protein: A Historical Overview. Journal of Pharmaceutical Care, 7(4), 112-117.
  • Kondrashina, A., Brodkorb, A. i Giblin, L. (2020). Dairy-derived Peptides for Satiety. Journal of Functional Foods, 66, 103801.
  • Kontopidis, G., Holt, C. i Sawyer, L. (2004). Beta-lactoglobulin: Binding Properties, Structure, and Function. Journal of Dairy Science, 87(4), 785-796.
  • Korhonen, H. (2009). Milk-derived Bioactive Peptides: From Science to Applications. Journal of Functional Foods, 1, 177-187.
  • Krissansen, G. W. (2007). Emerging Health Properties of Whey Proteins and their Clinical Implications. Journal of the American College of Nutrition, 26, 713-723.
  • Król, J., Brodziak, A. i Zaborowska, A. (2014). Białka serwatkowe jako naturalne surowce w przemyśle kosmetycznym. Polish Journal of Cosmetology, 17(2), 96-102.
  • Kruzel, M. L., Actor, J. K., Boldogh, I. i Zimecki, M. (2007). Lactoferrin in Health and Disease. Postępy Higieny i Medycyny Doświadczalnej, 61, 261-267.
  • Kruzel, M. L., Zimecki, M. i Actor, J. K. (2017). Lactoferrin in a Context of Inflammation-induced Pathology. Frontiers in Immunology, 8, 1438.
  • Laclair, C. E., Ney, D. M., Mac Leod, E. L. i Etzel, M. R. (2009). Purification of Glycomacropeptide for Nutritional Management of Phenyloketonuria. Journal of Food Science, 74, 199-206.
  • Layman, D. K., Lönnerdal, B. i Fernstrom, J. D. (2018). Applications for α-lactalbumin in Human Nutrition. Nutrition Reviews, 76(6), 444-460.
  • Le Maux, S., Giblin, L., Croguennec, T., Bouhallab, S. i Brodkorb, A. (2012). β-Lactoglobulin as a Molecular Carrier of Linoleate: Characterization and Effects on Intestinal Epithelial Cells in vitro. Journal of Agricultural and Food Chemistry, 60(37), 9476-9483.
  • Legrand, D. i Mazurier, J. (2010). A Critical Review of the Roles of Host Lactoferrin in Immunity. Biometals, 23, 365-376.
  • Li, C. P., Enomoto, H., Ohki, S., Ohtomo, H. i Aoki, T. (2005). Improvement of Functional Properties of Whey Protein Isolate through Glycation and Phosphorylation by Dry Heating. Journal of Dairy Science, 88(12), 4137-4145.
  • Li, E. W. i Mine, Y. (2004). Immuno Enhamcing Effects of Bovine Glicomacropeptide and its Derivatives on the Proliferative Response and Fagocytic Activities of Human Macrophage Like Cells U937. Journal of Agricultural and Food Chemistry, 52, 2704-2708.
  • Li, M., Ma, Y. i Ngadi, M. O. (2013). Binding of Curcumin to β-lactoglobulin and its Effect on Antioxidant Characteristics of Curcumin. Food Chemistry, 141(2), 1504-1511.
  • Li-Chan, E. C. (2015). Bioactive Peptides and Protein Hydrolysates: Research Trends and Challenges for Application as Nutraceuticals and Functional Food Ingredients. Current Opinion in Food Science, 1, 28-37.
  • Lišková, K., Kelly, A. L., O'Brien, N. i Brodkorb, A. (2010). Effect of Denaturation of α-lactalbumin on the Formation of BAMLET (Bovine Alpha-lactalbumin Made Lethal to Tumor Cells). Journal of Agriculture and Food Chemistry, 58(7), 4421-4427.
  • Liu, H. C., Chen, W. L. i Mao, S. J. T. (2007). Antioxidant Nature of Bovine Milk β-lactoglobulin. Journal of Dairy Science, 90(2), 547-555.
  • Liu, L., Jianga, R., Liu, J. i Lönnerdal, B. (2020). The Bovine Lactoferrin-Osteopontin Complex Increases Proliferation of Human Intestinal Epithelial Cells by Activating the PI3K/Akt Signaling Pathway. Food Chemistry, 310, 125919.
  • Livney, Y. D. (2010). Milk Proteins as Vehicles for Bioactives. Current Opinion in Colloid & Interface Science, 15(1-2), 73-83.
  • Lodhi, A. M., Aslam, P., Sajid, K. i Zulfiqar, K. (2019). Lactoferrin as Nutraceutical Protein from Milk. Journal of Nutraceuticals and Food Science, 4(1), 5.
  • Lönnerdal, B. i Lien, E. (2003). Nutritional and Physiologic Significance of Alpha-lactalbumin in Infants. Nutrition Reviews, 61, 295-305. DOI:10.1031/nr.2003.sept.295-305
  • Madadlou, A. i Abbaspourrad, A. (2018). Bioactive Whey Peptide Particles: An Emerging Class of Nutraceutical Carriers. Critical Reviews in Food Science and Nutrition, 58, 1468-1477.
  • Madureira, A. R., Pereira, C. I., Gomes, A. M., Pintado, M. E., Malcata, F. X. (2007). Bovine Whey Proteins - Overview on Their Main Biological Properties. Food Research International, 40(10), 1197-1211.
  • Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E. i Malcata, F. X. (2010). Invited Review: Physiological Properties of Bioactive Peptides Obtained from Whey Proteins. Journal of Dairy Science, 93, 437-455.
  • Manso, M. A. i Lopez-Fandino, R. (2004). κ-Casein Macropeptides from Cheese Whey: Physicochemical, Biological, Nutritional, and Technological Features for Possible Uses. Food Research International, 20(4), 329-355.
  • Markus, C. R., Olivier, B. i De Haan, E. H. F. (2002). Whey Protein Rich in Alpha-lactalbumin Increases the Ratio of Plasma Tryptophan to the Sum of the other Large Neutral Amino Acids and Improves Cognitive Performance in Stress Vulnerable Subjects. The American Journal of Clinical Nutrition, 75, 1051-1056.
  • Matsumoto, H., Shimokawa, Y., Ushida, Y., Toida, T. i Hayasawa, H. (2001). New Biological Function of Bovine Alpha-lactalbumin: Protective Effect AgaInst Ethanol- and Stress-induced Gastric Mucosal Injury in Rats. Bioscience, Biotechnology, and Biochemistry, 65, 1104-1111.
  • McGuffey, M., Epting, K., Kelly, R. i Foegeding, E. (2005). Denaturation and Aggregation of Three α-Lactalbumin Preparations at Neutral pH. Journal of Agricultural and Food Chemistry, 53, 3182-3190. DOI:10.1021/jf048863p
  • McSweeney, P. L. H. i Fox, P. F. (2013). Advanced Dairy Chemistry. Springer Science + Business Media New York
  • Medrano, A., Abirached, C., Panizzolo, L., Moyna, P. i Añón, M. C. (2009). The Effect of Glycation on Foam and Structural Properties of β-lactoglobulin. Food Chemistry, 113, 127-133.
  • Mehra, R., Marnila, P. i Korhonen, H. (2006). Milk Immunoglobulins for Health Promotion. International Dairy Journal, 16, 1262-1271.
  • Minj, S. i Anand, S. (2020).Whey Proteins and its Derivatives: Bioactivity, Functionality Andcurrent Application. Dairy, 1, 233-258.
  • Naclerio, F. i Seijo, M. (2019). Whey Protein Supplementation and Muscle Mass: Current Perspectives. Nutrition and Dietary Supplements, 11, 37-48. https://doi.org/10.2147/NDS.S166195
  • Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K. i Kanamaru, Y. (2001). Identification of Novel Hypocholesterolemic Peptides Derived from Bovine Milk β-lactoglobulin. Biochemical and Biophysical Research Communications, 218, 11-17.
  • Najmafshar, A., Rostami, M., Varshosaz, J., Norouzian, D. i Samsam Shariat, S. Z. A. (2020). Enhanced Antitumor Activity of Bovine Lactoferrin through Immobilization onto Functionalized Nano Graphene Oxide: An in Vitro/in Vivo Study. Drug Delivery, 27(1), 1236-1247.
  • Nakano, M., Suzuki, M., Wakabayashi, H., Hayama, K., Yamauchi, K., Abe, F. i Abe, S. (2019). Synergistic Anti-Candida Activities of Lactoferrin and the Lactoperoxidase System. Drug Discoveries & Therapeutics, 13(1), 28-33. DOI:10.5582/ddt.2019.01010. PMID:30880319
  • Neelima, Sharma, R., Rajput, Y. S. i Mann, B. (2013). Chemical and Functional Properties of Glycomacropeptide (GMP) and Its Role in the Detection of Cheese Whey Adulteration in Milk: A Review. Journal of. Dairy Science and Technology, 93, 21-43.
  • Ney, D. M., Stroup, B. M., Clayton, M. K., Murali, S. G., Rice, G. M., Rohr, F. i Levy, H. L. (2016). Glycomacropeptide for Nutritional Management of Phenylketonuria: A Randomized, Controlled, Crossover Trial. The American Journal of Clinical Nutrition, 104, 334-345.
  • Ng, T. B., Cheung, R. C. F., Wong, J. H., Wang, Y., Ip, D. T. M., Wan, D. C. C. i Xia, J. (2015). Antiviral Activities of Whey Proteins. Applied Microbiology and Biotechnology, 99(17), 6997-7008. https://doi.org/10.1007/s00253-015-6818-4
  • Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A. A., Khan, M. K. I., Tufail, T., Anjum, M. F., Hussain, S. i Suleria, H. A. R. (2019). Lactoferrin (LF): A Natural Antimicrobial Protein. International Journal of Food Properties, 22(1), 1626-1641. DOI:10.1080/10942912.2019.1666137
  • Nielsen, C. H., Hui, Y., Nguyen, D. N., Ahnfeldt, A. M., Burrin, D. G., Hartmann, B., Heckmann, A. B., Sangild, P. T., Thymann, T.i Bering, S. B. (2020). Alpha-Lactalbumin Enriched Whey Protein Concentrate to Improve Gut, Immunity and Brain Development in Preterm Pigs. Nutrients, 12(245). https://doi.org/10.3390/nu12010245
  • O'Riordan, N., Kane, M., Joshi, L. i Hickey, R. M. (2014). Structural and Functional Characteristics of Bovine Milk Protein Glycosylation. Glycobiology, 24, 220-236.
  • O'Riordan, N., O'Callagan, J., Buttò, L. F., Kilcoyne, M., Joshi, L., i Hickey, R. M. (2018). Bovine Glycomacropeptide Promotes the Growth of Bifidobacterium longum ssp. infntis and a Modulates its Gene Expression. Journal of Dairy Science, 101, 1-12. DOI:10.3168/jds.2018-14499
  • Orosco, M., Rouch, C., Beslot, F., Feurte, S., Regnault, A. i Dauge V. (2004). Alpha-lactalbumin-enriched Diets Enhance Serotonin Release and Induce Anxiolytic and Rewarding Effects in the Rat. Behavioural Brain Research, 148, 1-10.
  • Ouwehand, A. C., Salminen, S. J., Skurnik, M. i Conway, P. L. (1997). Inhibition of Pathogen Adhesion by β-lactoglobulin. International Dairy Journal, 7, 685-692.
  • Pan, Y., Wan, J., Roginski, H., Lee, A., Shiell, B., Michalski, W. i Coventry, M. (2007). Comparison of the Effects of Acylation and Amidation on the Antimicrobial and Antiviral Properties of Lactoferrin. Letters in Applied Microbiology, 44, 229-234.
  • Papademas, P. i Kotsaki, P. (2020). Technological Utilization of Whey Towards Sustainable Exploitation. Journal of Advances in Dairy Research, 7(4), 231. DOI:10.35248/2329-888X.19.7.231
  • Papiz, M. Z., Sawyer, L., Eliopoulos, E. E., North, A. C. T., Findlay, J. B. C., Sivaprasadarao, R., Jones, T. A., Newcomer, M. E. i Kraulis, P. J. (1986). The Structure of Beta-lactoglobulin and its Similarity to Plasma Retinol-Binding Protein. Nature, 324(6095), 383-385.
  • Patel, S. (2015a). Emerging Trends in Nutraceutical Applications of Whey Protein and its Derivatives. Journal of Food Science and Technology, 52, 6847-6858.
  • Patel, S. (2015b). Functional Foods Relevance of Whey Protein: A Review of Recent Findings and Scopes Ahead. Journal of Funcional Foods, 19, 308-319.
  • Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P. i von Fellenberg, R. (1999). Isolation and Identification of Three Bactericidal Domains in the Bovine Alphalactalbumin Molecule. Biochimica et Biophysica Acta, 1426, 439-448.
  • Pepe, G., Tenore, G. C., Mastrocinque, R., Stusio, P. i Campiglia, P. (2013). Potential Anticarcinogenic Peptides from Bovine Milk. Journal of Amino Acids, 2013. DOI:10.1155/2013/939804
  • Pérez, M. D. i Calvo, M. (1995). Interaction of Beta-lactoglobulin with Retinol and Fatty Acids and its Role as a Possible Biological Function for this Protein: A Review. Journal of Dairy Science, 78(5), 978-988.
  • Perez, M. D., Sanchez, L., Aranda, P., Ena, J., Oria, R. i Calvo, M. (1992). Effect of β-lactoglobulin on the Activity of Pregastric Lipase. A Possible Role for this Protein in Ruminant Milk. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1123, 151-155.
  • Permyakov, E. A. i Berliner, L. J. (2000). α-lactalbumin: Structure and Function. FEBS Letters, 473, 269-274.
  • Petrotos, K., Tsakali, E., Goulas, P. i D'Alessandro, A. G. (2014). Casein and Whey Proteins in Human Health. Milk and Dairy Products as Functional Foods, 94, 1-10.
  • Pihlanto-Leppälä, A. (2000). Bioactive Peptides Derived from Bovine Whey Proteins: Opioid and Ace-inhibitory Peptides. Trends Food Sci Technol, 11, 347-356.
  • Pihlanto, A. (2011). Whey Proteins and Peptides. Emerging Properties to Promote Health. Nutrafoods, 10, 29-42.
  • Poppit, S. D., Strik, C. M., McArdle, B. H., McGill, A. i Hall, R. S. (2013). Evidence of Enhanced Serum Amino Acid Profile but not Appetite Suppression by Dietary Glycomacropeptide (GMP): A Comparison of Dairy Whey Proteins. Journal of the American College of Nutrition, 32, 177-186.
  • Quintieri, L., Monaci, L., Baruzzi, F., Giuffrida, M. G., de Candia, S. i do Caputo, L. (2017). Reduction of Whey Protein Concentrate Antigenicity by Using a Combined Enzymatic Digestion and Ultrafiltration Approach. Journal of Food Science and Technology, 54(7), 1910-1916.
  • Rahaman, T., Vasiljevic, T. i Ramchandran, L. (2015). Conformational Changes of β-lactoglobulin Induced by Shear, Heat, and pH-Effects on Antigenicity. Journal of Dairy Science, 98, 4255-4265.
  • Rascón-Cruz, Q., Espinoza-Sánchez, E. A., Siqueiros-Cendón, T. S., Nakamura-Bencomo, S. I., Arévalo-Gallegos, S. i Iglesias-Figueroa, B. F. (2021). Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules, 26(205).
  • Rath, E. M., Duff, A. P., Håkansson, A. P., Vacher, C. S., Liu, G. J., Knott, R. B. i Church, W. B. (2015). Structure and Potential Cellular Targets of HAMLET-like Anti-cancer Compounds Made From Milk Components. Journal of Pharmacy & Pharmaceutical Sciences, 18(4), 773-824.
  • Reid, H. E., Fazzalari, N., Baker, H. M., Baker, E. N., Haggarty, N. W., Grey, A. B. i Reid, I. R. (2004). Lactoferrin is a Potent Regulator of Bone Cell Activity and Increases Bone Formation in Vivo. Endocrinology, 145, 4366-4374.
  • Requena, P., Daddaoua, A., Guadix, E., Zarzuelo, A., Suárez, M. D., De Medina, F. S. i Martínez-Augustin, O. (2009). Bovine Glycomacropeptide Induces Cytokine Production in Human Monocytes through the Stimulation of the MAPK and the NF-kB Signal Transduction Pathways. British Journal of Pharmacology, 157, 1232-1240.
  • Requena, P., Gonzalez, R., Lopez-Posadas, R., Abadia-Molina, A., Suarez, M. D., Zarzuelo, A., Medina, F. S. i Martinez-Augustin, O. (2010). The Intestinal Antiinflammatory Agent Glycomacropeptide Has Immunomodulatory Actions on rat Splenocytes. Biochemical Pharmacology, 79, 1797-1804.
  • Rhoades, J. R., Gibson, G. R., Formentin, K., Beer, M., Greenberg, N. i Rastall, R. A. (2005). Caseinoglycomacropeptide Inhibits Adhesion of Pathogenic Escherichia coli Strains to Human Cells in Culture. Journal of Dairy Science, 88, 3455-3459.
  • Rigo, J., Boehm, G., Georgi, G., Jelinek, J., Nyambugabo, K., Sawatzki, G. i Studzinski, F. (2001). An Infant Formula Free of Glycomacropeptide Prevents Hyperthreoninemia in Formula-fed Preterm Infants. Journal of Pediatric Gastroenterology and Nutrition, 32(2), 127-130.
  • Ruddick, J. P., Evans, A. K., Nutt, D. J., Lightman, S. L., Rook, G. A. W. i Lowry, C. A. (2006). Tryptophan Metabolism in the Central Nervous System: Medical Implications. Expert Reviews in Molecular Medicine, 8, 1-27.
  • Salaris, C., Scarpa, M., Elli, M., Bertolini, A., Guglielmetti, S., Pregliasco, F., Blandizzi, C., Brun, P. i Castagliuolo, I. (2021). Protective Effects of Lactoferrin Against SARS-CoV-2 Infection in Vitro. Nutrients, 13(2), 328. DOI:10.3390/nu13020328
  • Sanchez-Moya, T., Planes-Munoz, D., Frontela-Saseta, C., Ros-Berruzo, G. i Lopez-Nicolas, R. (2020). Milk Whey from Different Animal Species Stimulates the in vitro Release of CCK and GLP-1 through a Whole Simulated Intestinal Digestion. Food & Function, 11(8), 7208-7216.
  • Sauve, M. F., Spahis, S., E. i Levy, E. (2021). Glycomacropeptide: A Bioactive Milk Derivative to Alleviate Metabolic Syndrome Outcomes. Antioxidants & Redox Signaling, 34, 201-222.
  • Sava, M., van der Plancken, I., Claeys, W. i Hendrickx, M. (2005). The Kinetics of Heat-induced Structural Changes of β-lactoglobulin. Journal of Dairy Science, 88, 1646-1653.
  • Sawin, E. A., De Wolfe, T. J., Aktas, B., Stroup, B. M., Murali, S. G., Steele, J. L. i Ney, D. M. (2015). Glycomacropeptide is a Prebiotic that Reduces Desulfovibrio Bacteria, Increases Cecal Short-chain Fatty Acids, and is Anti-inflammatory in Mice. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 309(7), 590-601.
  • Schack, L., Lange, A., Kelsen, J., Agnholt, J., Christensen, B., Petersen, T. E. i Sørensen, E. S. (2009). Considerable Variation in the Concentration of Osteopontin in Human Milk, Bovine Milk, and Infant Formulas. Journal of Dairy Science, 92, 5378-5385.
  • Seifu, E., Buys, E. M. i Donkin, E. F. (2005). Significance of the Lactoperoxidase System in the Dairy Industry and its Potential Applications: A Review. Trends in Food Science & Technology, 16, 137-154.
  • Setarehnejad, A., Kanekanian, A., Tatham, A. i Abedi, A. (2010). The Protective Effect of Caseinomacropeptide against Dental Erosion Using Hydroxyapatite as a Model System. International Dairy Journal, 20, 652-656.
  • Severin, S. i Wenshui, X. (2005). Milk Biologically Active Components as Nutraceuticals: Review. Critical Reviews in Food Science and Nutrition, 45, 645-656.
  • Sharma, S., Singh, A. K., Kaushik, S., Sinha, M., Singh, R. P., Sharma, P., Sirohi, H., Kaur, P. i Singh, T. P. (2013). Lactoperoxidase: Structural Insights into the Function, Ligand Binding and Inhibition. International Journal of Biochemistry and Molecular Biology, 4(3), 108-128.
  • Simōes, L. S., Martins, J. T., Pinheiro, A. C., Vicente, A. A. i Ramos, O. L. (2020). β-Lactoglobulin Micro- and Nanostructures as Bioactive Compounds Vehicle: In vitro Studies. Food Research International, 131, 108979.
  • Sinha, M., Kaushik, S., Kaumar, P., Sharma, S. i Singh, T. P. (2013). Antimicrobial Lactoferrin Peptides, the Hidden Players in the Protective Function of a Multifunctional Protein. International Journal of Peptides, 390230.
  • Smithers, G. W. (2008). Whey and Whey Proteins - from 'Gutter-to-Gold'. International Dairy Journal, 18, 695-704.
  • Smithers, G. W. (2015). Whey-ing up the Options - Yesterday, Today and Tomorrow. International Dairy Journal, 48, 2-14.
  • Sokolowska, A., Bednarz, R., Pacewicz, M., Georgiades, J. A., Wilusz, T. i Polanowski, A. (2008). Colostrum from Different Mammalian Species - A Rich Source of Colostrinin. International Dairy Journal, 18, 204-209.
  • Soltani, M., Say, D. i Guzeler, N. (2017). Functional Properties and Nutritional Quality of Whey Proteins. Journal of International Environmental Application and Science, 12(4), 334-338.
  • Sousa, G. T. D., Lira, F. S., Rosa, J. C., De Oliveira, E. P., Oyama, L. M., Santos, R. V. i Pimentel, G. D. (2012). Dietary Whey Protein Lessens Several Risk Factors for Metabolic Diseases: A Review. Lipids in Health and Disease, 11(67).
  • Steijns, J. M. i Hooijdonk, A. C. M. (2000). Occurrence, Structure, Biochemical Properties and Technological Characteristics of Lactoferrin. British Journal of Nutrition, 84(suppl.1), 11-17.
  • Steijns, J. M. (2001). Milk Ingredients as Nutraceuticals. The International Journal of Dairy Technology, 54(3), 81-88.
  • Sun, S. J., Feng, Y. Y., Zhang, Y., Ji, H. Y., Yu, J. i Liu, A. J. (2018). Antitumor and Immunoregulatory Activities of Seleno-β-lactoglobulin on s180 Tumor-bearing Mice. Molecules, 23(1), 46. https://doi.org/10.3390/molecules23010046
  • Superti, F., Siciliano, R., Rega, B., Giansanti, F., Valenti, P. i Antonini, G. (2001). Involvement of Bovine Lactoferrin Metal Saturation, Sialic Acid and Protein Fragments in the Inhibition of Rotavirus Infection. Biochimica et Biophysica Acta, 1528(2-3), 107-115. DOI:10.1016/s0304-4165(01)00178-7
  • Superti, F. (2020). Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients, 12, 2562. DOI:10.3390/nu12092562
  • Szpendowski, J. i Siemianowski, K. (2013). Właściwości odżywcze i funkcjonalne oraz zastosowanie kazeinianów w przetwórstwie spożywczym. Engineering Sciences & Technologies/Nauki Inżynierskie i Technologie.
  • Teixeira, F. J., Santos, H. O., Howell, S. L. i Pimentel, G. D. (2019). Whey Protein in Cancer Therapy: A Narrative Review. Pharmacological Research, 144, 245-256. DOI:10.1016/j.phrs.2019.04.019
  • Teng, Z., Luo, Y., Li, Y. i Wang, Q. (2016). Cationic Beta-lactoglobulin Nanoparticles as a Bioavailability Enhancer: Effect of Surface Properties and Size on the Transport and Delivery in vitro. Food Chemistry, 204, 391-399.
  • Thomä-Worringer, C., Sørensen, J. i López-Fandiño, R. (2006). Health Effects and Technological Features of Caseinomacropep tide. International Dairy Journal, 16, 1324-1333.
  • Trachootham, D., Lu, W., Ogasawara, M. A., Valle, N. R. D. i Huang, P. (2008). Redox Regulation of Cell Survival. Antioxidants & Redox Signaling, 10 , 1343-1374.
  • Tseng, Y. M., Lin, S. K., Hsiao, J. K., Chen, I. J., Lee, J. H., Wu, S. H. i Tsai, L. Y. (2006). Whey Protein Concentrate Promotes the Production of Glutathione (GSH) by GSH Reductase in the PC12 Cell Line after Acute Ethanol Exposure. Food and Chemical Toxicology, 44(4), 574-578. https://doi.org/10.1016/j.fct.2005.09.00
  • Tsutsumi, R. i Tsutsumi, Y. M. (2014). Peptides and Proteins in Whey and their Benefits for Human Health. Austin Journal of Nutrition and Food Sciences, 1(1), 1002.
  • Tulipano, G. (2020). Role of Bioactive Peptide Sequences in the Potential Impact of Dairy Protein Intake on Metabolic Health. International Journal of Molecular Sciences, 21(22), 8881.
  • Varlamova, E. G. i Zaripov, O. G. (2020). Beta-lactoglobulin Nutrition Allergen and Nanotransporter of Different Nature Ligands Therapy with Therapeutic Action. Research in Veterinary Science, 133, 17-25.
  • Vasilyev, V. B., Sokolov, A. V., Kostevich, V. A., Elizarova, A. Y., Gorbunov, N. P. i Panasenko, O. M. (2021). Binding of Lactoferrin to the Surface of Low-Density Lipoproteins Modified by Myeloperoxidase Prevents Intracellular Cholesterol Accumulation by human Blood Monocytes. Biochemistry and Cell Biology, 99(1), 109-116.
  • Villa, C., Costa, J., Oliveira, M. B. P. i Mafra, I. (2018). Bovine Milk Allergens: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 17, 137-164. https://doi.org/10.1111/1541-4337.12318
  • Wang, B. (2009). Sialic Acid is an Essential Nutrient for Brain Development and Cognition. Annual Review of Nutrition, 29, 177-222.
  • Wang, B., Timilsena, Y. P., Blanch, E. i Adhikari, B. (2019). Lactoferrin: Structure, Function, Denaturation and Digestion. Critical Reviews in Food Science and Nutrition, 59, 580-596.
  • Wang, Q., Allen, J. C. i Swaisgood, H. E. (1997). Binding of Vitamin D and Cholesterol to β-lactoglobulin. Journal of Dairy Science, 80, 1054-1059.
  • Wefers, D., Bindereif, B., Karbstein, H. P. i Van Der Schaaf, U. S. (2018). Whey Protein-Pectin Conjugates: Linking the Improved Emulsifying Properties to Molecular and Physico-Chemical Characteristics. Food Hydrocolloids, 85, 257-266.
  • Wereńska, M. i Okruszek, A. (2011). Wartość odżywcza różnego rodzaju jaj. Engineering Sciences & Technologies/Nauki Inżynierskie i Technologie.
  • Wilde, S. C., Treitz, C., Keppler, J. K., Koudelka, T., Palani, K., Tholey, A., Rawel, H. M. i Schwarz, K. (2016). β-Lactoglobulin as Nanotransporter - Part II: Characterization of the Covalent Protein Modification by Allicin and Diallyl Disulphide. Food Chemistry, 197, 1022-1029.
  • Wu, X., Lu, Y., Xu, H., Lin, D., He, Z., Wu, H., Liu, L. i Wang, Z. (2018). Reducing the Allergenic Capacity of β-lactoglobulin by Covalent Conjugation with Dietary Polyphenols. Food Chemistry, 256, 427-434.
  • Xu, R. (2009). Effect of Whey Protein on the Proliferation and Differentiation of Osteoblasts. Journal of Dairy Science, 92, 3014-3018. DOI:10.3168/jds.2008-1702
  • Xu, Y. (1996). Isolation and Characterization of Components from Whey. University of Western Sydney, Hawkesbury (Australia). ProQuest Dissertations Publishing, 10309947.
  • Xu, Q., Shi, J., Yao, M., Jiang, M. i Luo, Y. (2016). Effects of Heat Treatment on the Antigenicity of Four Milk Proteins in Milk Protein Concentrates. Food and Agricultural Immunology, 27, 401-413.
  • Yang, J., Wang, H. P., Tong, X., Li, Z. N., Xu, J. Y., Zhou, L., Zhou, B. Y. i Qin, L. Q. (2019). Effect of Whey Protein on Blood Pressure in Pre- and Mildly Hypertensive Adults: A Randomized Controlled Study. Food Science & Nutrition, 7(5), 1857-1864. DOI:10.1002/fsn3.1040
  • Yoshida, S., Xiuyun, Y. i Nishium, T. (1991). The Binding Ability of α-lactalbumin and β-lactoglobulin to Mutagenic Heterocyclic Amines. Journal of Dairy Science, 74, 3741-3745.
  • Zabłocka, A., Sokołowska, A., Macała, J., Bartoszewska, M., Mitkiewicz, M., Janusz, M., Wilusz, T. i Polanowski, A. (2020). Colostral Proline-Rich Polypeptide Complexes. Comparative Study of the Antioxidant Properties, Cytokine-Inducing Activity, and Nitric Oxide Release Of Preparations Produced by a Laboratory and a Large-Scale Method. International Journal of Peptide Research and Therapeutics, 26, 685-694. https://doi.org/10.1007/s10989-019-09876-6
  • Zagorska, J. i Ciprovica, I. (2012). The Influence of Heat Treatment on Antimicrobial Proteins in Milk. World Academy of Science, Engineering and Technology, 64, 832-836.
  • Zimecki, M. i Artym, J. (2005). Therapeutic Properties of Proteins and Peptides from Colostrum and Milk. Postępy Higieny i Medycyny Doświadczalnej, 59, 309-323.
  • Zimecki, M., Artym, J., Chodaczek, G., Kocięba, M., Rybka, J., Skórska, A. i Kruze, L. M. (2006). Glycomacropeptide Protects against Experimental Endotoxemia and Bacteremia in Mice. Electronic Journal of Polish Agricultural Universities, 9(2), 12.
  • Zimecki, M. i Kruzel, M. L. (2007). Milk-derived Proteins and Peptides of Potential Therapeutic and Nutritive Value. Journal of Experimental Therapeutics and Oncology, 6, 89-106.
  • Zimet, P. i Livney, Y. D. (2009). Beta-lactoglobulin and Its Nanocomplexes with Pectin as Vehicles for ω-3 Polyunsaturated Fatty Acids. Food Hydrocolloids, 23, 1120-1126.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171692448

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.