PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | nr 41 | 5--18
Tytuł artykułu

Mechanical properties of fibre/filler based polylactic Acid (PLA) composites: a brief review

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Being a biodegradable polymer, poly(lactic acid) (PLA) based composites receive greater preference over nonbiodegradable plastics. Poly(lactic acid) has to find its place in various applications such as polymer composites, agriculture, biomedical, etc. Polymer composites based on PLA possess comparable mechanical strength, endurance, flexibility and endures future opportunities. Several combinations of natural fibers and filler-based PLA composites have been fabricated and investigated for physical and mechanical changes. Moreover, several biopolymers and compatibilizers are added to PLA to provide rigidity. The paper presents a tabulated review of the various natural fiber/filter-based PLA composites and the preparation and outcomes. In addition, enhancement made by the reinforcement of nano filler in the PLA are also discussed in brief. The significance of PLA in the biomedical application has been discussed in brief. The paper also shed lights in the social and economic aspects of PLA.(original abstract)
Czasopismo
Rocznik
Numer
Strony
5--18
Opis fizyczny
Twórcy
  • Research Scholar, School of Engineering & Technology, University of Technology Jaipur, Rajasthan, India
  • School of Engineering & Technology, University of Technology Jaipur, Rajasthan, India
  • Mechanical Engineering Department, SOET, HNB Garhwal University Srinagar, Uttarakhand, India
  • Department of Mechanical Engineering, NIT Uttarakhand, Srinagar, India
  • Department of Pedodontics, People College of Dental Sciences, Bhopal, MP, India
Bibliografia
  • M. Shen, B. Song, G. Zeng, Y. Zhang, W. Huang, X. Wen, W. Tang, Are biodegradable plastics a promising solution to solve the global plastic pollution?, "Environmental Pollution", 263 (2020) 114469. https://doi.org/10.1016/j.envpol.2020.114469.
  • S.P. Gairola, Y.K. Tyagi, B. Gangil, A. Sharma, Fabrication and mechanical property evaluation of non-woven banana fibre epoxy-based polymer composite, in: "Materials Today: Proceedings", 2020: pp. 3990-3996. https://doi.org/10.1016/j.matpr.2020.10.103.
  • L. Ranakoti, P.K. Rakesh, Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite, "Composites Communications", 22 (2020) 100526. https://doi.org/10.1016/j.coco.2020.100526.
  • B. Yadav, A. Pandey, L.R. Kumar, R.D. Tyagi, Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach, "Bioresource Technology", 298 (2020) 122584. https://doi.org/10.1016/j.biortech.2019.122584.
  • S. Rodriguez-Perez, A. Serrano, A.A. Pantión, B. Alonso-Fariñas, Challenges of scaling-up PHA production from waste streams. A review, "Journal of Environmental Management", 205 (2018) 215-230. https://doi.org/10.1016/j.jenvman.2017.09.083.
  • S.K. Verma, A. Gupta, T. Singh, B. Gangil, E. Jánosi, G. Fekete, Influence of dolomite on mechanical, physical and erosive wear properties of natural-synthetic fiber reinforced epoxy composites, "Materials Research Express", 6 (2019) 125704. https://doi.org/10.1088/2053-1591/ab5abb.
  • R. Siakeng, M. Jawaid, H. Ariffin, S.M. Sapuan, M. Asim, N. Saba, Natural fiber reinforced polylactic acid composites: A review, "Polymer Composites", 40 (2019) 446-463. https://doi.org/10.1002/pc.24747.
  • L. Ranakoti, B. Gangil, P. Kumar Rakesh, N. Agrawal, Synthesis and Utilization of Biodegradable Polymers, in: Biobased Composites: Processing, Characterization, Properties, and Applications, Wiley, 2021: pp. 167-174. https://doi.org/10.1002/9781119641803.ch12.
  • A. Basu, M. Nazarkovsky, R. Ghadi, W. Khan, A.J. Domb, Poly(lactic acid)-based nanocomposites, "Polymers for Advanced Technologies", 28 (2017) 919-930. https://doi.org/10.1002/pat.3985.
  • F. Saliu, S. Montano, M.G. Garavaglia, M. Lasagni, D. Seveso, P. Galli, Microplastic and charred microplastic in the Faafu Atoll, Maldives, "Marine Pollution Bulletin1", 36 (2018) 464-471. https://doi.org/10.1016/j.marpolbul.2018.09.023.
  • E. Kabir, R. Kaur, J. Lee, K.H. Kim, E.E. Kwon, Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes, "Journal of Cleaner Production", 258 (2020) 120536. https://doi.org/10.1016/j.jclepro.2020.120536.
  • T.G. Yashas Gowda, M.R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, B. Yogesha, Polymer matrix-natural fiber composites: An overview, "Cogent Engineering", 5 (2018) 1446667. https://doi.org/10.1080/23311916.2018.1446667.
  • A. Ilyas Rushdana, M. Sapuan Salit, M. Lamin Sanyang, M. Ridzwan Ishak, Nanocrystalline Cellulose As Reinforcement For Polymeric Matrix Nanocomposites And Its Potential Applications: A Review, "Current Analytical Chemistry", 13 (2017) 203-225. https://doi.org/10.2174/1573411013666171003155624.
  • X. Cui, A. Ozaki, T.A. Asoh, H. Uyama, Cellulose modified by citric acid reinforced Poly(lactic acid) resin as fillers, "Polymer Degradation and Stability", 175 (2020) 109118. https://doi.org/10.1016/j.polymdegradstab.2020.109118.
  • M.K. Lila, K. Shukla, U.K. Komal, I. Singh, Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites, "Composites Part B: Engineering", 156 (2019) 121-127. https://doi.org/10.1016/j.compositesb.2018.08.068.
  • J.O. Akindoyo, M.D.H. Beg, S. Ghazali, H.P. Heim, M. Feldmann, M. Mariatti, Simultaneous impact modified and chain extended glass fiber reinforced poly(lactic acid) composites: Mechanical, thermal, crystallization, and dynamic mechanical performance, "Journal of Applied Polymer Science", 138 (2021) 49752. https://doi.org/10.1002/app.49752.
  • G. Wang, D. Zhang, B. Li, G. Wan, G. Zhao, A. Zhang, Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment, "International of Biological Macromolecules", 129 (2019) 448-459. https://doi.org/10.1016/j.ijbiomac.2019.02.020.
  • X. Zuo, Y. Xue, L. Wang, Y. Zhou, Y. Yin, Y.C. Chuang, C.C. Chang, R. Yin, M.H. Rafailovich, Y. Guo, Engineering Styrenic Blends with Poly(lactic acid), "Macromolecules", 52 (2019) 7547-7556. https://doi.org/10.1021/acs.macromol.9b01349.
  • S. Bhattacharjee, D.S. Bajwa, Feasibility of Reprocessing Natural Fiber Filled Poly(lactic acid) Composites: An In-Depth Investigation, "Advances in Materials Science and Engineering", 2017 (2017) 1-10. https://doi.org/10.1155/2017/1430892.
  • L. Musyarofah, D. Puspita, E. Hidayah, Sujito, Tensile properties of coir and fleece fibers reinforced poly-lactic acid hybrid green composites, in: "Journal of Physics: Conference Series", 2019: p. 012008. https://doi.org/10.1088/1742-6596/1217/1/012008.
  • H. Ren, Y. Zhang, H. Zhai, J. Chen, Production and evaluation of biodegradable composites based on polyhydroxybutyrate and polylactic acid reinforced with short and long pulp fibers, "Cellulose Chemistry and Technology", 49 (2015) 641-652.
  • T. Yu, J. Ren, S. Li, H. Yuan, Y. Li, Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, "Composites Part A: Applied Science and Manufacturing", 41 (2010) 499-505. https://doi.org/10.1016/j.compositesa.2009.12.006.
  • N.A. Ibrahim, W. Md Zin Wan Yunus, M. Othman, K. Abdan, K.A. Hadithon, Poly(Lactic Acid) (PLA)-reinforced kenaf bast fiber composites: The effect of triacetin, "Journal of Reinforced Plastics and Composites", 29 (2010) 1099-1111. https://doi.org/10.1177/0731684409344651.
  • P. Juntuek, C. Ruksakulpiwat, P. Chumsamrong, Y. Ruksakulpiwat, Mechanical properties of polylactic acid and natural rubber blends using vetiver grass fiber as filler, in: "Advanced Materials Research", 2010: pp. 1167-1170. https://doi.org/10.4028/www.scientific.net/AMR.123-125.1167.
  • T. Tábi, N.K. Kovács, J.G. Kovács, Basalt fibre reinforced poly (LACTIC ACID) based composites for engineering applications, in: 16th European Conference Composite Materials ECCM 2014, 2014.
  • X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, "Composites Part A: Applied Science and Manufacturing", 88 (2016) 198-205. https://doi.org/10.1016/j.compositesa.2016.05.032.
  • W. Xu, The mechanical properties of Carbon fiber/Polylatide/Chitosan composites, in: 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010: pp. 1-4. https://doi.org/10.1109/ICBBE.2010.5515711.
  • X.G. Li, X. Zheng, Y.Q. Wu, DMA analysis on bamboo fiber/polylactic acid composites, in: 2010 International Conference on Mechanic Automation and Control Engineering, IEEE, 2010: pp. 3090-3092. https://doi.org/10.1109/MACE.2010.5535322.
  • B. Asaithambi, G. Ganesan, S. Ananda Kumar, Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites, "Fibers and Polymers", 15 (2014) 847-854. https://doi.org/10.1007/s12221-014-0847-y.
  • V.L. Finkenstadt, C.K. Liu, P.H. Cooke, L.S. Liu, J.L. Willett, Mechanical property characterization of plasticized sugar beet pulp and poly(lactic acid) green composites using acoustic emission and confocal microscopy, "Journal of Polymers and the Environment", 16 (2008) 19-26. https://doi.org/10.1007/s10924-008-0085-8.
  • E. Fortunati, D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman, M.L. Foresti, A. Vazquez, J.M. Kenny, Okra (Abelmoschus esculentus) Fibre Based PLA Composites: Mechanical Behaviour and Biodegradation, "Journal of Polymers and the Environment", 21 (2013) 726-737. https://doi.org/10.1007/s10924-013-0571-5.
  • M.M. Hassan, K. Koyama, Thermomechanical and viscoelastic properties of green composites of PLA using chitin micro-particles as fillers, "Journal of Polymer Research", 27 (2020) 27. https://doi.org/10.1007/s10965-019-1991-2.
  • C.T. Hsieh, Y.J. Pan, C.W. Lou, C.L. Huang, Z.I. Lin, J.M. Liao, J.H. Lin, Polylactic acid/carbon fiber composites: Effects of functionalized elastomers on mechanical properties, thermal behavior, surface compatibility, and electrical characteristics, "Fibers and Polymers", 17 (2016) 615-623. https://doi.org/10.1007/s12221-016-5922-0.
  • K.W. Kim, B.H. Lee, H.J. Kim, K. Sriroth, J.R. Dorgan, Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites, in: "Journal of Thermal Analysis and Calorimetry", 2012: pp. 1131-1139. https://doi.org/10.1007/s10973-011-1350-y.
  • S. Kuciel, K. Mazur, M. Hebda, The Influence of Wood and Basalt Fibres on Mechanical, Thermal and Hydrothermal Properties of PLA Composites, "Journal of Polymers and the Environment", 28 (2020) 1204-1215. https://doi.org/10.1007/s10924-020-01677-z.
  • A. Masek, K. Diakowska, M. Zaborski, Physico-mechanical and thermal properties of epoxidized natural rubber/polylactide (ENR/PLA) composites reinforced with lignocellulose, "Journal of Thermal Analysis and Calorimetry", 125 (2016) 1467-1476. https://doi.org/10.1007/s10973-016-5682-5.
  • T.R. Rigolin, M.C. Takahashi, D.L. Kondo, S.H.P. Bettini, Compatibilizer Acidity in Coir-Reinforced PLA Composites: Matrix Degradation and Composite Properties, "Journal of Polymers and the Environment", 27 (2019) 1096-1104. https://doi.org/10.1007/s10924-019-01411-4.
  • Y. Song, J. Liu, S. Chen, Y. Zheng, S. Ruan, Y. Bin, Mechanical Properties of Poly (Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method, "Journal of Polymers and the Environment", 21 (2013) 1117-1127. https://doi.org/10.1007/s10924-013-0569-z.
  • C. Way, D.Y. Wu, D. Cram, K. Dean, E. Palombo, Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres, "Journal of Polymers and the Environment" 21 (2013) 54-70. https://doi.org/10.1007/s10924-012-0462-1.
  • C. Xu, X. Zhang, X. Jin, S. Nie, R. Yang, Study on Mechanical and Thermal Properties of Poly(Lactic acid)/Poly(Butylene adipate-co-terephthalate)/Office Wastepaper Fiber Biodegradable Composites, "Journal of Polymers and the Environment" 27 (2019) 1273-1284. https://doi.org/10.1007/s10924-019-01428-9.
  • A.A. Yussuf, I. Massoumi, A. Hassan, Comparison of polylactic Acid/Kenaf and polylactic Acid/Rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties, "Journal of Polymers and the Environment", 18 (2010) 422-429. https://doi.org/10.1007/s10924-010-0185-0.
  • M. Ghorbani Chaboki, J. Mohammadi-Rovshandeh, F. Hemmati, Poly(lactic acid)/thermoplasticized rice straw biocomposites: effects of benzylated lignocellulosic filler and nanoclay, "Iranian Polymer Journal", (English Ed. 28 (2019) 777-788. https://doi.org/10.1007/s13726-019-00743-1.
  • A. Zandi, A. Zanganeh, F. Hemmati, J. Mohammadi-Roshandeh, Thermal and biodegradation properties of poly(lactic acid)/rice straw composites: effects of modified pulping products, "Iranian Polymer Journal" (English Ed. 28 (2019) 403-415. https://doi.org/10.1007/s13726-019-00709-3.
  • A.P. Morales, A. Güemes, A. Fernandez-Lopez, V.C. Valero, S. de La Rosa Llano, Bamboo-polylactic acid (PLA) composite material for structural applications, "Materials" (Basel). 10 (2017) 1286. https://doi.org/10.3390/ma10111286.
  • D. Li, Y. Jiang, S. Lv, X. Liu, J. Gu, Q. Chen, Y. Zhang, Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials, "PLoS One", 13 (2018) e0193520. https://doi.org/10.1371/journal.pone.0193520.
  • M. Soleimani, L.G. Tabil, I. Oguocha, J. Fung, Interactive Influence of Biofiber Composition and Elastomer on Physico-Mechanical Properties of PLA Green Composites, "Journal of Polymers and the Environment", 26 (2018) 532-542. https://doi.org/10.1007/s10924-017-0967-8.
  • A. Grząbka-Zasadzińska, M. Odalanowska, S. Borysiak, Thermal and mechanical properties of biodegradable composites with nanometric cellulose, "Journal of Thermal Analysis and Calorimetry", 138 (2019) 4407-4416. https://doi.org/10.1007/s10973-019-09023-9.
  • M.M. Hassan, M.J. Le Guen, N. Tucker, K. Parker, Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA, "Cellulose", 26 (2019) 4463-4478. https://doi.org/10.1007/s10570-019-02393-1.
  • X. Zhang, L. Chen, T. Mulholland, T.A. Osswald, Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, "SN Applied Sciences", 1 (2019) 616. https://doi.org/10.1007/s42452-019-0639-5.
  • P.O. Bussiere, S. Therias, J.L. Gardette, M. Murariu, P. Dubois, M. Baba, Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid), "Physical Chemistry Chemical Physics", 14 (2012) 12301-12308. https://doi.org/10.1039/c2cp41574g.
  • M. Murariu, A. Doumbia, L. Bonnaud, A.L. Dechief, Y. Paint, M. Ferreira, C. Campagne, E. Devaux, P. Dubois, High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties, "Biomacromolecules", 12 (2011) 1762-1771. https://doi.org/10.1021/bm2001445.
  • M.E. Hoque, Processing and Characterization of Cockle Shell Calcium Carbonate (CaCO3) Bioceramic for Potential Application in Bone Tissue Engineering, "Materials Science and Engineering: A", 02 (2013). https://doi.org/10.4172/2169-0022.1000132.
  • J.Z. Liang, L. Zhou, C.Y. Tang, C.P. Tsui, Crystalline properties of poly(L-lactic acid) composites filled with nanometer calcium carbonate, "Composites Part B: Engineering", 45 (2013) 1646-1650. https://doi.org/10.1016/j.compositesb.2012.09.086.
  • Y.B. Nekhamanurak, P. Patanathabutr, N. Hongsriphan, Mechanical Properties of Hydrophilicity Modified CaCO3-Poly (Lactic Acid) Nanocomposite, "International Journal of Applied Physics and Mathematics" (2012) 98-103. https://doi.org/10.7763/ijapm.2012.v2.62.
  • N. Shi, J. Cai, Q. Dou, Crystallization, morphology and mechanical properties of PLA/PBAT/CaCO3 composites, in: "Advanced Materials Research", 2013: pp. 768-771. https://doi.org/10.4028/www.scientific.net/AMR.602-604.768.
  • W.M. Chiu, Y.A. Chang, H.Y. Kuo, M.H. Lin, H.C. Wen, A study of carbon nanotubes/biodegradable plastic polylactic acid composites, "Journal of Applied Polymer Science", 108 (2008) 3024-3030. https://doi.org/10.1002/app.27796.
  • K. Fukushima, M. Murariu, G. Camino, P. Dubois, Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid), "Polymer Degradation and Stability", 95 (2010) 1063-1076. https://doi.org/10.1016/j.polymdegradstab.2010.02.029.
  • L. Suryanegara, A.N. Nakagaito, H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, "Composites Science and Technology", 69 (2009) 1187-1192. https://doi.org/10.1016/j.compscitech.2009.02.022.
  • P. Tingaut, T. Zimmermann, F. Lopez-Suevos, Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose, "Biomacromolecules", 11 (2010) 454-464. https://doi.org/10.1021/bm901186u.
  • I. Spiridon, K. Leluk, A.M. Resmerita, R.N. Darie, Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering, "Composites Part B: Engineering", 69 (2015) 342-349. https://doi.org/10.1016/j.compositesb.2014.10.006.
  • B.K. Chen, C.H. Shen, A.F. Chen, Preparation of ductile PLA materials by modification with trimethyl hexamethylene diisocyanate, "Polymer Bulletin", 69 (2012) 313-322. https://doi.org/10.1007/s00289-012-0730-1.
  • R. Pantani, G. Gorrasi, G. Vigliotta, M. Murariu, P. Dubois, PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics, "European Polymer Journal", 49 (2013) 3471-3482. https://doi.org/10.1016/j.eurpolymj.2013.08.005.
  • R. Malinowski, K. Janczak, P. Rytlewski, A. Raszkowska-Kaczor, K. Moraczewski, T. Zuk, Influence of glass microspheres on selected properties of polylactide composites, "Composites Part B: Engineering", 76 (2015) 13-19. https://doi.org/10.1016/j.compositesb.2015.02.013.
  • Y. Li, C. Chen, J. Li, X.S. Sun, Synthesis and characterization of bionanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization, "Polymer" (Guildf). 52 (2011) 2367-2375. https://doi.org/10.1016/j.polymer.2011.03.050.
  • Y.B. Luo, W. Da Li, X.L. Wang, D.Y. Xu, Y.Z. Wang, Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2, "Acta Materialia", 57 (2009) 3182-3191. https://doi.org/10.1016/j.actamat.2009.03.022.
  • M. Vallet-Regi, S. Granado, D. Arcos, M. Gordo, M. V. Cabanas, C. V. Ragel, A.J. Salinas, A.L. Doadrio, J. San Roman, Preparation, characterization, andin vitro release of Ibuprofen from Al2O3/PLA/PMMA composites, "Journal of Biomedical Materials Research", 39 (1998) 423-428. https://doi.org/10.1002/(SICI)1097-4636(19980305)39:3<423::AID-JBM11>3.0.CO;2-B.
  • M. Sajjadi, M. Nasrollahzadeh, S. Mohammad Sajadi, Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity, "Journal of Colloid and Interface Science" 497 (2017) 1-13. https://doi.org/10.1016/j.jcis.2017.02.037.
  • M. Shabanian, M. Khoobi, F. Hemati, H.A. Khonakdar, S. esmaeil S. Ebrahimi, U. Wagenknecht, A. Shafiee, New PLA/PEI-functionalized Fe3O4 nanocomposite: Preparation and characterization, "Journal of Industrial and Engineering Chemistry", 24 (2015) 211-218. https://doi.org/10.1016/j.jiec.2014.09.032.
  • M.Y. Razzaq, M. Behl, A. Lendlein, Magnetic memory effect of nanocomposites, "Advanced Functional Materials", 22 (2012) 184-191. https://doi.org/10.1002/adfm.201101590.
  • S. Taccola, A. Desii, V. Pensabene, T. Fujie, A. Saito, S. Takeoka, P. Dario, A. Menciassi, V. Mattoli, Free-standing poly(l-lactic acid) nanofilms loaded with superparamagnetic nanoparticles, "Langmuir", 27 (2011) 5589-5595. https://doi.org/10.1021/la2004134.
  • S. Vacaras, M. Baciut, O. Lucaciu, C. Dinu, G. Baciut, L. Crisan, M. Hedesiu, B. Crisan, F. Onisor, G. Armencea, I. Mitre, I. Barbur, W. Kretschmer, S. Bran, Understanding the basis of medical use of poly-lactide-based resorbable polymers and composites-a review of the clinical and metabolic impact, "Drug Metabolism Reviews", 51 (2019) 570-588. https://doi.org/10.1080/03602532.2019.1642911.
  • S.M. Davachi, B. Kaffashi, Polylactic Acid in Medicine, "Polymer-Plastics Technology and Materials", 54 (2015) 944-967. https://doi.org/10.1080/03602559.2014.979507.
  • Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, M. Glogauer, Biodegradable materials for bone repair and tissue engineering applications, "Materials" (Basel). 8 (2015) 5744-5794. https://doi.org/10.3390/ma8095273.
  • J.C. Bogaert, P. Coszach, Poly(lactic acids): A potential solution to plastic waste dilemma, in: "Macromolecuar Symposia", 2000: pp. 287-303. https://doi.org/10.1002/1521-3900(200003)153:1<287::AID-MASY287>3.0.CO;2-E.
  • E.T.H. Vink, K.R. Rábago, D.A. Glassner, P.R. G ruber, Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production, "Polymer Degradation and Stability", 80 (2003) 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5.
  • S. Chiarakorn, C.K. Permpoonwiwat, P. Nanthachatchavankul, Financial and economic viability of bioplastic production in Thailand, 2014.
  • Tides Center/Environmental Health Strategy Center; Maine Initiaties; Jim Lunt & Associates LLC, The Business Case for Commercial Production of Bioplastics in Maine: A preliminary report, 2010.
  • A. Manandhar, A. Shah, Techno-economic analysis of bio-based lactic acid production utilizing corn grain as feedstock, "Processes", 8 (2020) 199. https://doi.org/10.3390/pr8020199.
  • S. Sanaei, P.R. Stuart, Systematic assessment of triticale-based biorefinery strategies: techno-economic analysis to identify investment opportunities, "Biofuels, Bioproducts Biorefining", 12 (2018) S46-S59. https://doi.org/10.1002/bbb.1499.
  • E.T.H. Vink, D.A. Glassner, J.J. Kolstad, R.J. Wooley, R.P. O'Connor, The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production "Industrial Biotechnology", 3 (2007) 58-81. https://doi.org/10.1089/ind.2007.3.058.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171647940

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.